trek90s commited on
Commit
5ea1bf8
1 Parent(s): d5968f3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -1
README.md CHANGED
@@ -12,7 +12,9 @@ widget:
12
 
13
  # Note
14
 
15
- BERT based sentiment analysis, finetune based on https://huggingface.co/IDEA-CCNL/Erlangshen-Roberta-330M-Sentiment .The model trained on hotel human review chinese datasets.
 
 
16
 
17
  # Usage
18
 
@@ -35,4 +37,33 @@ print(result)
35
  print result
36
  >> [{'label': 'Positive', 'score': 0.989660382270813}]
37
  """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
  ```
 
12
 
13
  # Note
14
 
15
+ BERT based sentiment analysis, finetune based on https://huggingface.co/IDEA-CCNL/Erlangshen-Roberta-330M-Sentiment .
16
+
17
+ The model trained on **hotel human review chinese datasets**.
18
 
19
  # Usage
20
 
 
37
  print result
38
  >> [{'label': 'Positive', 'score': 0.989660382270813}]
39
  """
40
+ ```
41
+
42
+ # Evaluate
43
+ We compared and evaluated the performance of *Our finetune model* and the *original Erlangshen model* on the **hotel human review test dataset**(5429 negative reviews and 1251 positive reviews).
44
+
45
+ The results showed that our model substantial improved the precision and recall of positive review:
46
+
47
+ ```text
48
+ Our finetune model:
49
+ precision recall f1-score support
50
+
51
+ Negative 0.99 0.98 0.98 5429
52
+ Positive 0.92 0.95 0.93 1251
53
+
54
+ accuracy 0.97 6680
55
+ macro avg 0.95 0.96 0.96 6680
56
+ weighted avg 0.97 0.97 0.97 6680
57
+
58
+ ======================================================
59
+
60
+ Original Erlangshen model:
61
+ precision recall f1-score support
62
+
63
+ Negative 0.81 1.00 0.90 5429
64
+ Positive 0.00 0.00 0.00 1251
65
+
66
+ accuracy 0.81 6680
67
+ macro avg 0.41 0.50 0.45 6680
68
+ weighted avg 0.66 0.81 0.73 6680
69
  ```