Upload train_unigram.py
Browse files- train_unigram.py +119 -0
train_unigram.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Usage:
|
3 |
+
python train_unigram.py --export_to_hub
|
4 |
+
|
5 |
+
Note that you'd need to execute `huggingface-cli login` before if you passed export_to_hub.
|
6 |
+
|
7 |
+
Reference:
|
8 |
+
https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/tokenizer_training.ipynb
|
9 |
+
"""
|
10 |
+
|
11 |
+
import argparse
|
12 |
+
import logging
|
13 |
+
|
14 |
+
import datasets
|
15 |
+
import torch
|
16 |
+
from datasets import Dataset
|
17 |
+
from tokenizers import (
|
18 |
+
Tokenizer,
|
19 |
+
decoders,
|
20 |
+
normalizers,
|
21 |
+
pre_tokenizers,
|
22 |
+
processors,
|
23 |
+
)
|
24 |
+
from tokenizers.models import Unigram
|
25 |
+
from tokenizers.trainers import UnigramTrainer
|
26 |
+
from transformers import AlbertTokenizerFast
|
27 |
+
|
28 |
+
|
29 |
+
def parse_args():
|
30 |
+
parser = argparse.ArgumentParser(
|
31 |
+
description="Train a unigram tokenizer on the wikitext dataset."
|
32 |
+
)
|
33 |
+
parser.add_argument(
|
34 |
+
"-bs",
|
35 |
+
"--batch-size",
|
36 |
+
type=int,
|
37 |
+
default=1000,
|
38 |
+
help="Batch size during training.",
|
39 |
+
)
|
40 |
+
parser.add_argument(
|
41 |
+
"-vs",
|
42 |
+
"--vocab-size",
|
43 |
+
type=int,
|
44 |
+
default=10000,
|
45 |
+
help="Size of the desired vocabulary.",
|
46 |
+
)
|
47 |
+
parser.add_argument(
|
48 |
+
"--limit",
|
49 |
+
default=None,
|
50 |
+
type=int,
|
51 |
+
help="Limit the number of shards (used for debugging).",
|
52 |
+
)
|
53 |
+
parser.add_argument(
|
54 |
+
"--export_to_hub",
|
55 |
+
action="store_true",
|
56 |
+
)
|
57 |
+
|
58 |
+
args = parser.parse_args()
|
59 |
+
return args
|
60 |
+
|
61 |
+
|
62 |
+
def get_unigram_tokenizer() -> Tokenizer:
|
63 |
+
tokenizer = Tokenizer(Unigram())
|
64 |
+
tokenizer.normalizer = normalizers.Sequence(
|
65 |
+
[normalizers.Replace("``", '"'), normalizers.Replace("''", '"')]
|
66 |
+
)
|
67 |
+
tokenizer.pre_tokenizer = pre_tokenizers.Metaspace()
|
68 |
+
return tokenizer
|
69 |
+
|
70 |
+
|
71 |
+
def get_unigram_trainer(vocab_size: int) -> UnigramTrainer:
|
72 |
+
trainer = UnigramTrainer(
|
73 |
+
unk_token="<unk>",
|
74 |
+
special_tokens=["[CLS]", "[SEP]", "<unk>", "<pad>", "[MASK]"],
|
75 |
+
vocab_size=vocab_size,
|
76 |
+
)
|
77 |
+
return trainer
|
78 |
+
|
79 |
+
|
80 |
+
def main(args):
|
81 |
+
wikitext = datasets.load_dataset(
|
82 |
+
"wikitext", "wikitext-103-raw-v1", split="train"
|
83 |
+
)
|
84 |
+
|
85 |
+
if args.limit is not None:
|
86 |
+
wikitext = wikitext[: args.limit]
|
87 |
+
wikitext = Dataset.from_dict(wikitext)
|
88 |
+
logging.info(f"Limiting the dataset to {args.limit} entries.")
|
89 |
+
|
90 |
+
dataloader = torch.utils.data.DataLoader(
|
91 |
+
wikitext, num_workers=0, batch_size=args.batch_size
|
92 |
+
)
|
93 |
+
logging.info("Training the tokenizer.")
|
94 |
+
tokenizer = get_unigram_tokenizer()
|
95 |
+
trainer = get_unigram_trainer(args.vocab_size)
|
96 |
+
tokenizer.train_from_iterator(dataloader, trainer=trainer)
|
97 |
+
logging.info("Tokenizer training complete!")
|
98 |
+
|
99 |
+
cls_token_id = tokenizer.token_to_id("[CLS]")
|
100 |
+
sep_token_id = tokenizer.token_to_id("[SEP]")
|
101 |
+
tokenizer.post_processor = processors.TemplateProcessing(
|
102 |
+
single="[CLS]:0 $A:0 [SEP]:0",
|
103 |
+
pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1",
|
104 |
+
special_tokens=[
|
105 |
+
("[CLS]", cls_token_id),
|
106 |
+
("[SEP]", sep_token_id),
|
107 |
+
],
|
108 |
+
)
|
109 |
+
tokenizer.decoder = decoders.Metaspace()
|
110 |
+
|
111 |
+
if args.export_to_hub:
|
112 |
+
logging.info("Exporting the trained tokenzier to Hub.")
|
113 |
+
new_tokenizer = AlbertTokenizerFast(tokenizer_object=tokenizer)
|
114 |
+
new_tokenizer.push_to_hub("sayakpaul/unigram-tokenizer-wikitext")
|
115 |
+
|
116 |
+
|
117 |
+
if __name__ == "__main__":
|
118 |
+
args = parse_args()
|
119 |
+
main(args)
|