Update README.md
Browse files
README.md
CHANGED
@@ -41,25 +41,23 @@ import torchaudio
|
|
41 |
from datasets import load_dataset
|
42 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
43 |
|
44 |
-
test_dataset = load_dataset("common_voice", "
|
45 |
-
|
46 |
-
|
47 |
-
model = Wav2Vec2ForCTC.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
|
48 |
-
|
49 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
50 |
|
51 |
# Preprocessing the datasets.
|
52 |
# We need to read the aduio files as arrays
|
53 |
def speech_file_to_array_fn(batch):
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
|
58 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
59 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
60 |
|
61 |
with torch.no_grad():
|
62 |
-
|
63 |
|
64 |
predicted_ids = torch.argmax(logits, dim=-1)
|
65 |
|
@@ -87,30 +85,29 @@ processor = Wav2Vec2Processor.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hin
|
|
87 |
model = Wav2Vec2ForCTC.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi")
|
88 |
model.to("cuda")
|
89 |
|
90 |
-
chars_to_ignore_regex = '[\\\\\\\\,\\\\\\\\?\\\\\\\\.\\\\\\\\!\\\\\\\\-\\\\\\\\;\\\\\\\\:\\\\\\\\"\\\\\\\\“]' # TODO: adapt this list to include all special characters you removed from the data
|
91 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
92 |
|
93 |
# Preprocessing the datasets.
|
94 |
# We need to read the aduio files as arrays
|
95 |
def speech_file_to_array_fn(batch):
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
|
101 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
102 |
|
103 |
# Preprocessing the datasets.
|
104 |
# We need to read the aduio files as arrays
|
105 |
def evaluate(batch):
|
106 |
-
|
107 |
|
108 |
-
|
109 |
-
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
|
115 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
116 |
|
|
|
41 |
from datasets import load_dataset
|
42 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
43 |
|
44 |
+
test_dataset = load_dataset("common_voice", "hi", split="test[:2%]")
|
45 |
+
processor = Wav2Vec2Processor.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi")
|
46 |
+
model = Wav2Vec2ForCTC.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi")
|
|
|
|
|
47 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
48 |
|
49 |
# Preprocessing the datasets.
|
50 |
# We need to read the aduio files as arrays
|
51 |
def speech_file_to_array_fn(batch):
|
52 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
53 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
54 |
+
return batch
|
55 |
|
56 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
57 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
58 |
|
59 |
with torch.no_grad():
|
60 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
61 |
|
62 |
predicted_ids = torch.argmax(logits, dim=-1)
|
63 |
|
|
|
85 |
model = Wav2Vec2ForCTC.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi")
|
86 |
model.to("cuda")
|
87 |
|
|
|
88 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
89 |
|
90 |
# Preprocessing the datasets.
|
91 |
# We need to read the aduio files as arrays
|
92 |
def speech_file_to_array_fn(batch):
|
93 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
94 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
95 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
96 |
+
return batch
|
97 |
|
98 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
99 |
|
100 |
# Preprocessing the datasets.
|
101 |
# We need to read the aduio files as arrays
|
102 |
def evaluate(batch):
|
103 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
104 |
|
105 |
+
with torch.no_grad():
|
106 |
+
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
107 |
|
108 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
109 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
110 |
+
return batch
|
111 |
|
112 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
113 |
|