Update README.md
Browse files
README.md
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
-
|
2 |
language: hi
|
3 |
datasets:
|
4 |
- Interspeech 2021 : [Multilingual and code-switching ASR challenges for low resource Indian languages](https://navana-tech.github.io/IS21SS-indicASRchallenge/data.html).
|
5 |
-
|
6 |
metrics:
|
7 |
- wer
|
8 |
tags:
|
@@ -13,7 +12,6 @@ tags:
|
|
13 |
license: apache-2.0
|
14 |
model-index:
|
15 |
- name: Hindi XLSR Wav2Vec2 Large 53
|
16 |
-
|
17 |
results:
|
18 |
- task:
|
19 |
name: Speech Recognition
|
@@ -53,15 +51,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
|
53 |
# Preprocessing the datasets.
|
54 |
# We need to read the aduio files as arrays
|
55 |
def speech_file_to_array_fn(batch):
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
|
60 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
61 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
62 |
|
63 |
with torch.no_grad():
|
64 |
-
|
65 |
|
66 |
predicted_ids = torch.argmax(logits, dim=-1)
|
67 |
|
@@ -89,30 +87,30 @@ processor = Wav2Vec2Processor.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hin
|
|
89 |
model = Wav2Vec2ForCTC.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi")
|
90 |
model.to("cuda")
|
91 |
|
92 |
-
chars_to_ignore_regex = '[
|
93 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
94 |
|
95 |
# Preprocessing the datasets.
|
96 |
# We need to read the aduio files as arrays
|
97 |
def speech_file_to_array_fn(batch):
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
|
103 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
104 |
|
105 |
# Preprocessing the datasets.
|
106 |
# We need to read the aduio files as arrays
|
107 |
def evaluate(batch):
|
108 |
-
|
109 |
|
110 |
-
|
111 |
-
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
|
117 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
118 |
|
|
|
1 |
+
---
|
2 |
language: hi
|
3 |
datasets:
|
4 |
- Interspeech 2021 : [Multilingual and code-switching ASR challenges for low resource Indian languages](https://navana-tech.github.io/IS21SS-indicASRchallenge/data.html).
|
|
|
5 |
metrics:
|
6 |
- wer
|
7 |
tags:
|
|
|
12 |
license: apache-2.0
|
13 |
model-index:
|
14 |
- name: Hindi XLSR Wav2Vec2 Large 53
|
|
|
15 |
results:
|
16 |
- task:
|
17 |
name: Speech Recognition
|
|
|
51 |
# Preprocessing the datasets.
|
52 |
# We need to read the aduio files as arrays
|
53 |
def speech_file_to_array_fn(batch):
|
54 |
+
\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
55 |
+
\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
56 |
+
\treturn batch
|
57 |
|
58 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
59 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
60 |
|
61 |
with torch.no_grad():
|
62 |
+
\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
63 |
|
64 |
predicted_ids = torch.argmax(logits, dim=-1)
|
65 |
|
|
|
87 |
model = Wav2Vec2ForCTC.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi")
|
88 |
model.to("cuda")
|
89 |
|
90 |
+
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]' # TODO: adapt this list to include all special characters you removed from the data
|
91 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
92 |
|
93 |
# Preprocessing the datasets.
|
94 |
# We need to read the aduio files as arrays
|
95 |
def speech_file_to_array_fn(batch):
|
96 |
+
\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
97 |
+
\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
98 |
+
\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
99 |
+
\treturn batch
|
100 |
|
101 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
102 |
|
103 |
# Preprocessing the datasets.
|
104 |
# We need to read the aduio files as arrays
|
105 |
def evaluate(batch):
|
106 |
+
\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
107 |
|
108 |
+
\twith torch.no_grad():
|
109 |
+
\t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
110 |
|
111 |
+
\tpred_ids = torch.argmax(logits, dim=-1)
|
112 |
+
\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
|
113 |
+
\treturn batch
|
114 |
|
115 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
116 |
|