--- base_model: cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual tags: - generated_from_trainer metrics: - accuracy model-index: - name: sentiment_analysis_model_rpsi results: [] --- [Visualize in Weights & Biases](https://wandb.ai/themohal/huggingface/runs/ddp65niu) # sentiment_analysis_model_rpsi This model is a fine-tuned version of [cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5686 - Accuracy: 0.8018 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.7314 | 1.0 | 3378 | 0.6028 | 0.7367 | | 0.563 | 2.0 | 6756 | 0.5503 | 0.7646 | | 0.4859 | 3.0 | 10134 | 0.5316 | 0.7847 | | 0.421 | 4.0 | 13512 | 0.5223 | 0.7954 | | 0.3668 | 5.0 | 16890 | 0.5514 | 0.7973 | | 0.3266 | 6.0 | 20268 | 0.5686 | 0.8018 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1