|
from network import U2NET |
|
|
|
import os |
|
from PIL import Image |
|
import cv2 |
|
import gdown |
|
import argparse |
|
import numpy as np |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torchvision.transforms as transforms |
|
|
|
from collections import OrderedDict |
|
from options import opt |
|
|
|
|
|
def load_checkpoint(model, checkpoint_path): |
|
if not os.path.exists(checkpoint_path): |
|
print("----No checkpoints at given path----") |
|
return |
|
model_state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu")) |
|
new_state_dict = OrderedDict() |
|
for k, v in model_state_dict.items(): |
|
name = k[7:] |
|
new_state_dict[name] = v |
|
|
|
model.load_state_dict(new_state_dict) |
|
print("----checkpoints loaded from path: {}----".format(checkpoint_path)) |
|
return model |
|
|
|
|
|
def get_palette(num_cls): |
|
""" Returns the color map for visualizing the segmentation mask. |
|
Args: |
|
num_cls: Number of classes |
|
Returns: |
|
The color map |
|
""" |
|
n = num_cls |
|
palette = [0] * (n * 3) |
|
for j in range(0, n): |
|
lab = j |
|
palette[j * 3 + 0] = 0 |
|
palette[j * 3 + 1] = 0 |
|
palette[j * 3 + 2] = 0 |
|
i = 0 |
|
while lab: |
|
palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i)) |
|
palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i)) |
|
palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i)) |
|
i += 1 |
|
lab >>= 3 |
|
return palette |
|
|
|
|
|
class Normalize_image(object): |
|
"""Normalize given tensor into given mean and standard dev |
|
|
|
Args: |
|
mean (float): Desired mean to substract from tensors |
|
std (float): Desired std to divide from tensors |
|
""" |
|
|
|
def __init__(self, mean, std): |
|
assert isinstance(mean, (float)) |
|
if isinstance(mean, float): |
|
self.mean = mean |
|
|
|
if isinstance(std, float): |
|
self.std = std |
|
|
|
self.normalize_1 = transforms.Normalize(self.mean, self.std) |
|
self.normalize_3 = transforms.Normalize([self.mean] * 3, [self.std] * 3) |
|
self.normalize_18 = transforms.Normalize([self.mean] * 18, [self.std] * 18) |
|
|
|
def __call__(self, image_tensor): |
|
if image_tensor.shape[0] == 1: |
|
return self.normalize_1(image_tensor) |
|
|
|
elif image_tensor.shape[0] == 3: |
|
return self.normalize_3(image_tensor) |
|
|
|
elif image_tensor.shape[0] == 18: |
|
return self.normalize_18(image_tensor) |
|
|
|
else: |
|
assert "Please set proper channels! Normlization implemented only for 1, 3 and 18" |
|
|
|
|
|
|
|
|
|
def apply_transform(img): |
|
transforms_list = [] |
|
transforms_list += [transforms.ToTensor()] |
|
transforms_list += [Normalize_image(0.5, 0.5)] |
|
transform_rgb = transforms.Compose(transforms_list) |
|
return transform_rgb(img) |
|
|
|
|
|
|
|
def generate_mask(input_image, net, palette, device = 'cpu'): |
|
|
|
|
|
img = input_image |
|
img_size = img.size |
|
img = img.resize((768, 768), Image.BICUBIC) |
|
image_tensor = apply_transform(img) |
|
image_tensor = torch.unsqueeze(image_tensor, 0) |
|
|
|
alpha_out_dir = os.path.join(opt.output,'alpha') |
|
cloth_seg_out_dir = os.path.join(opt.output,'cloth_seg') |
|
|
|
os.makedirs(alpha_out_dir, exist_ok=True) |
|
os.makedirs(cloth_seg_out_dir, exist_ok=True) |
|
|
|
with torch.no_grad(): |
|
output_tensor = net(image_tensor.to(device)) |
|
output_tensor = F.log_softmax(output_tensor[0], dim=1) |
|
output_tensor = torch.max(output_tensor, dim=1, keepdim=True)[1] |
|
output_tensor = torch.squeeze(output_tensor, dim=0) |
|
output_arr = output_tensor.cpu().numpy() |
|
|
|
classes_to_save = [] |
|
|
|
|
|
for cls in range(1, 4): |
|
if np.any(output_arr == cls): |
|
classes_to_save.append(cls) |
|
|
|
|
|
for cls in classes_to_save: |
|
alpha_mask = (output_arr == cls).astype(np.uint8) * 255 |
|
alpha_mask = alpha_mask[0] |
|
alpha_mask_img = Image.fromarray(alpha_mask, mode='L') |
|
alpha_mask_img = alpha_mask_img.resize(img_size, Image.BICUBIC) |
|
alpha_mask_img.save(os.path.join(alpha_out_dir, f'{cls}.png')) |
|
|
|
|
|
cloth_seg = Image.fromarray(output_arr[0].astype(np.uint8), mode='P') |
|
cloth_seg.putpalette(palette) |
|
cloth_seg = cloth_seg.resize(img_size, Image.BICUBIC) |
|
cloth_seg.save(os.path.join(cloth_seg_out_dir, 'final_seg.png')) |
|
return cloth_seg |
|
|
|
|
|
|
|
def check_or_download_model(file_path): |
|
if not os.path.exists(file_path): |
|
os.makedirs(os.path.dirname(file_path), exist_ok=True) |
|
url = "https://drive.google.com/uc?id=11xTBALOeUkyuaK3l60CpkYHLTmv7k3dY" |
|
gdown.download(url, file_path, quiet=False) |
|
print("Model downloaded successfully.") |
|
else: |
|
print("Model already exists.") |
|
|
|
|
|
def load_seg_model(checkpoint_path, device='cpu'): |
|
net = U2NET(in_ch=3, out_ch=4) |
|
check_or_download_model(checkpoint_path) |
|
net = load_checkpoint(net, checkpoint_path) |
|
net = net.to(device) |
|
net = net.eval() |
|
|
|
return net |
|
|
|
|
|
def main(args): |
|
|
|
device = 'cuda:0' if args.cuda else 'cpu' |
|
|
|
|
|
model = load_seg_model(args.checkpoint_path, device=device) |
|
|
|
palette = get_palette(4) |
|
|
|
img = Image.open(args.image).convert('RGB') |
|
|
|
cloth_seg = generate_mask(img, net=model, palette=palette, device=device) |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser(description='Help to set arguments for Cloth Segmentation.') |
|
parser.add_argument('--image', type=str, help='Path to the input image') |
|
parser.add_argument('--cuda', action='store_true', help='Enable CUDA (default: False)') |
|
parser.add_argument('--checkpoint_path', type=str, default='model/cloth_segm.pth', help='Path to the checkpoint file') |
|
args = parser.parse_args() |
|
|
|
main(args) |