File size: 2,351 Bytes
1e3b872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import os

import torch

import numpy as np
from PIL import Image, ImageOps
from .utils import BIGMAX
from .logger import logger


class LoadImagesFromDirectory:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "directory": ("STRING", {"default": ""}),
            },
            "optional": {
                "image_load_cap": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}),
                "start_index": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}),
            }
        }
    
    RETURN_TYPES = ("IMAGE", "MASK", "INT")
    FUNCTION = "load_images"

    CATEGORY = ""

    def load_images(self, directory: str, image_load_cap: int = 0, start_index: int = 0):
        if not os.path.isdir(directory):
            raise FileNotFoundError(f"Directory '{directory} cannot be found.'")
        dir_files = os.listdir(directory)
        if len(dir_files) == 0:
            raise FileNotFoundError(f"No files in directory '{directory}'.")

        dir_files = sorted(dir_files)
        dir_files = [os.path.join(directory, x) for x in dir_files]
        # start at start_index
        dir_files = dir_files[start_index:]

        images = []
        masks = []

        limit_images = False
        if image_load_cap > 0:
            limit_images = True
        image_count = 0

        for image_path in dir_files:
            if os.path.isdir(image_path):
                continue
            if limit_images and image_count >= image_load_cap:
                break
            i = Image.open(image_path)
            i = ImageOps.exif_transpose(i)
            image = i.convert("RGB")
            image = np.array(image).astype(np.float32) / 255.0
            image = torch.from_numpy(image)[None,]
            if 'A' in i.getbands():
                mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
                mask = 1. - torch.from_numpy(mask)
            else:
                mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
            images.append(image)
            masks.append(mask)
            image_count += 1
        
        if len(images) == 0:
            raise FileNotFoundError(f"No images could be loaded from directory '{directory}'.")

        return (torch.cat(images, dim=0), torch.stack(masks, dim=0), image_count)