File size: 11,989 Bytes
1e3b872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import comfy.clip_vision
import comfy.clip_model
import comfy.model_management
import comfy.utils
from comfy.sd import CLIP
from itertools import zip_longest
from transformers import CLIPImageProcessor
from transformers.image_utils import PILImageResampling
from collections import Counter
import folder_paths
import torch
import os
from .model import PhotoMakerIDEncoder
from .utils import load_image, tokenize_with_weights, prepImage, crop_image_pil, LoadImageCustom
from folder_paths import folder_names_and_paths, models_dir, supported_pt_extensions, add_model_folder_path
from torch import Tensor
import hashlib

folder_names_and_paths["photomaker"] = ([os.path.join(models_dir, "photomaker")], supported_pt_extensions)
add_model_folder_path("loras", folder_names_and_paths["photomaker"][0][0])

class PhotoMakerLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "photomaker_model_name": (folder_paths.get_filename_list("photomaker"), ),
                             }}
    RETURN_TYPES = ("PHOTOMAKER",)
    FUNCTION = "load_photomaker_model"

    CATEGORY = "PhotoMaker"

    def load_photomaker_model(self, photomaker_model_name):
        photomaker_model_path = folder_paths.get_full_path("photomaker", photomaker_model_name)
        photomaker_model = PhotoMakerIDEncoder()
        data = comfy.utils.load_torch_file(photomaker_model_path, safe_load=True)
        if "id_encoder" in data:
            data = data["id_encoder"]
        photomaker_model.load_state_dict(data)
        return (photomaker_model,)


class PhotoMakerEncodePlus:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                    "clip": ("CLIP",),
                    "photomaker": ("PHOTOMAKER",),
                    "image": ("IMAGE",),
                    "trigger_word": ("STRING", {"default": "img"}),
                    "text": ("STRING", {"multiline": True, "default": "photograph of a man img", "dynamicPrompts": True}),
                },
        }
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_photomaker"

    CATEGORY = "PhotoMaker"

    @torch.no_grad()
    def apply_photomaker(self, clip: CLIP, photomaker: PhotoMakerIDEncoder, image: Tensor, trigger_word: str, text: str):
        if (num_id_images:=len(image)) == 0:
            raise ValueError("No image provided or found.")
        trigger_word=trigger_word.strip()
        tokens = clip.tokenize(text)
        class_tokens_mask = {}
        for key in tokens:
            clip_tokenizer = getattr(clip.tokenizer, f'clip_{key}', clip.tokenizer)
            tkwp = tokenize_with_weights(clip_tokenizer, text, return_tokens=True)
            # e.g.: 24157
            class_token = clip_tokenizer.tokenizer(trigger_word)["input_ids"][clip_tokenizer.tokens_start:-1][0]

            tmp=[]
            mask=[]
            num = num_id_images
            num_trigger_tokens_processed = 0
            for ls in tkwp:
                # recreate the list of pairs
                p = []
                pmask = []
                # remove consecutive duplicates
                newls = [ls[0]] + [curr for prev, curr in zip_longest(ls, ls[1:])
                                        if not (curr and prev and curr[0] == class_token and prev[0] == class_token)]
                if newls and newls[-1] is None: newls.pop()
                for pair in newls:
                    # Non-matches simply get appended to the list.
                    if pair[0] != class_token:
                        p.append(pair)
                        pmask.append(pair)
                    else:
                        # Found a match; append it to the previous list or main list's last list
                        num_trigger_tokens_processed += 1
                        if p:
                            # take the last element of the list we're creating and repeat it
                            pmask[-1] = (-1, pmask[-1][1])
                            if num-1 > 0:
                                p.extend([p[-1]] * (num-1))
                                pmask.extend([( -1, pmask[-1][1]  )] * (num-1))
                        else:
                            # The list we're cerating is empty so
                            # take the last element of the main list and then take its last element and repeat it
                            if tmp and tmp[-1]:
                                last_ls = tmp[-1]
                                last_pair = last_ls[-1]
                                mask[-1][-1] = (-1, mask[-1][-1][1])
                                if num-1 > 0:
                                    last_ls.extend([last_pair] * (num-1))
                                    mask[-1].extend([ (-1, mask[-1][-1][1]) ] * (num-1))
                if p: tmp.append(p)
                if pmask: mask.append(pmask)
            token_weight_pairs = tmp
            token_weight_pairs_mask = mask
            
            # send it back to be batched evenly
            token_weight_pairs = tokenize_with_weights(clip_tokenizer, text, tokens=token_weight_pairs)
            token_weight_pairs_mask = tokenize_with_weights(clip_tokenizer, text, tokens=token_weight_pairs_mask)
            tokens[key] = token_weight_pairs

            # Finalize the mask
            class_tokens_mask[key] = list(map(lambda a:  list(map(lambda b: b[0] < 0, a)), token_weight_pairs_mask))

        prompt_embeds, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
        cond = prompt_embeds
        device_orig = prompt_embeds.device
        first_key = next(iter(class_tokens_mask.keys()))
        class_tokens_mask = class_tokens_mask[first_key]
        if num_trigger_tokens_processed > 1:
            image = image.repeat([num_trigger_tokens_processed] + [1] * (len(image.shape) - 1))

        photomaker = photomaker.to(device=photomaker.load_device)

        _, h, w, _ = image.shape
        do_resize = (h, w) != (224, 224)
        image_bak = image
        try:
            if do_resize:
                clip_preprocess = CLIPImageProcessor(resample=PILImageResampling.LANCZOS, do_normalize=False, do_rescale=False, do_convert_rgb=False)
                image = clip_preprocess(image, return_tensors="pt").pixel_values.movedim(1,-1)
        except RuntimeError as e:
            image = image_bak
        pixel_values = comfy.clip_vision.clip_preprocess(image.to(photomaker.load_device)).float()
        cond = photomaker(id_pixel_values=pixel_values.unsqueeze(0), prompt_embeds=cond.to(photomaker.load_device),
                        class_tokens_mask=torch.tensor(class_tokens_mask, dtype=torch.bool, device=photomaker.load_device).unsqueeze(0))
        cond = cond.to(device=device_orig)

        return ([[cond, {"pooled_output": pooled}]],)


from .style_template import styles

class PhotoMakerStyles:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                    "style_name": (list(styles.keys()), {"default": "Photographic (Default)"}),
                },
                "optional": {
                    "positive": ("STRING", {"multiline": True, "forceInput": True, "dynamicPrompts": True}),
                    "negative": ("STRING", {"multiline": True, "forceInput": True, "dynamicPrompts": True}),
                },
            }
    RETURN_TYPES = ("STRING","STRING",)
    RETURN_NAMES = ("POSITIVE","NEGATIVE",)
    FUNCTION = "apply_photomaker_style"

    CATEGORY = "PhotoMaker"

    def apply_photomaker_style(self, style_name, positive: str = '', negative: str = ''):
        p, n = styles.get(style_name, "Photographic (Default)")
        return p.replace("{prompt}", positive), n + ' ' + negative

class PrepImagesForClipVisionFromPath:
    def __init__(self) -> None:
        self.image_loader = LoadImageCustom()
        self.load_device = comfy.model_management.text_encoder_device()
        self.offload_device = comfy.model_management.text_encoder_offload_device()
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "path": ("STRING", {"multiline": False}),
            "interpolation": (["nearest", "bilinear", "box", "bicubic", "lanczos", "hamming"], {"default": "lanczos"}),
            "crop_position": (["top", "bottom", "left", "right", "center", "pad"], {"default": "center"}),
            },
        }

    @classmethod
    def IS_CHANGED(s, path:str, interpolation, crop_position):
        image_path_list = s.get_images_paths(path)
        hashes = []
        for image_path in image_path_list:
            if not (path.startswith("http://") or path.startswith("https://")):
                m = hashlib.sha256()
                with open(image_path, 'rb') as f:
                    m.update(f.read())
                hashes.append(m.digest().hex())
        return Counter(hashes)

    @classmethod
    def VALIDATE_INPUTS(s, path:str, interpolation, crop_position):
        image_path_list = s.get_images_paths(path)
        if len(image_path_list) == 0:
            return "No image provided or found."
        return True

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "prep_images_for_clip_vision_from_path"

    CATEGORY = "ipadapter"

    @classmethod
    def get_images_paths(self, path:str):
        image_path_list = []
        path = path.strip()
        if path:
            image_path_list = [path]
            if not (path.startswith("http://") or path.startswith("https://")) and os.path.isdir(path):
                image_basename_list = os.listdir(path)
                image_path_list = [
                    os.path.join(path, basename) 
                    for basename in image_basename_list
                    if not basename.startswith('.') and basename.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.webp', '.gif'))
                ]
        return image_path_list

    def prep_images_for_clip_vision_from_path(self, path:str, interpolation:str, crop_position,):
        image_path_list = self.get_images_paths(path)
        if len(image_path_list) == 0:
            raise ValueError("No image provided or found.")

        interpolation=interpolation.upper()
        size = (224, 224)
        try:
            input_id_images = [img if (img:=load_image(image_path)).size == size else crop_image_pil(img, crop_position) for image_path in image_path_list]
            do_resize = not all(img.size == size for img in input_id_images)
            resample = getattr(PILImageResampling, interpolation)
            clip_preprocess = CLIPImageProcessor(resample=resample, do_normalize=False, do_resize=do_resize)
            id_pixel_values = clip_preprocess(input_id_images, return_tensors="pt").pixel_values.movedim(1,-1)
        except TypeError as err:
            print('[PhotoMaker]:', err)
            print('[PhotoMaker]: You may need to update transformers.')
            input_id_images = [self.image_loader.load_image(image_path)[0] for image_path in image_path_list]
            do_resize = not all(img.shape[-3:-3+2] == size for img in input_id_images)
            if do_resize:
                id_pixel_values = torch.cat([prepImage(img, interpolation=interpolation, crop_position=crop_position) for img in input_id_images])
            else:
                id_pixel_values = torch.cat(input_id_images)
        return (id_pixel_values,)

supported = False
try:
    from comfy_extras.nodes_photomaker import PhotoMakerLoader as _PhotoMakerLoader
    supported = True
except: ...

NODE_CLASS_MAPPINGS = {
   **({} if supported else {"PhotoMakerLoader": PhotoMakerLoader}),
    "PhotoMakerEncodePlus": PhotoMakerEncodePlus,
    "PhotoMakerStyles": PhotoMakerStyles,
    "PrepImagesForClipVisionFromPath": PrepImagesForClipVisionFromPath,
}

NODE_DISPLAY_NAME_MAPPINGS = {
   **({} if supported else {"PhotoMakerLoader": "Load PhotoMaker"}),
    "PhotoMakerEncodePlus": "PhotoMaker Encode Plus",
    "PhotoMakerStyles": "Apply PhotoMaker Style",
    "PrepImagesForClipVisionFromPath": "Prepare Images For CLIP Vision From Path",
}