File size: 11,989 Bytes
1e3b872 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import comfy.clip_vision
import comfy.clip_model
import comfy.model_management
import comfy.utils
from comfy.sd import CLIP
from itertools import zip_longest
from transformers import CLIPImageProcessor
from transformers.image_utils import PILImageResampling
from collections import Counter
import folder_paths
import torch
import os
from .model import PhotoMakerIDEncoder
from .utils import load_image, tokenize_with_weights, prepImage, crop_image_pil, LoadImageCustom
from folder_paths import folder_names_and_paths, models_dir, supported_pt_extensions, add_model_folder_path
from torch import Tensor
import hashlib
folder_names_and_paths["photomaker"] = ([os.path.join(models_dir, "photomaker")], supported_pt_extensions)
add_model_folder_path("loras", folder_names_and_paths["photomaker"][0][0])
class PhotoMakerLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "photomaker_model_name": (folder_paths.get_filename_list("photomaker"), ),
}}
RETURN_TYPES = ("PHOTOMAKER",)
FUNCTION = "load_photomaker_model"
CATEGORY = "PhotoMaker"
def load_photomaker_model(self, photomaker_model_name):
photomaker_model_path = folder_paths.get_full_path("photomaker", photomaker_model_name)
photomaker_model = PhotoMakerIDEncoder()
data = comfy.utils.load_torch_file(photomaker_model_path, safe_load=True)
if "id_encoder" in data:
data = data["id_encoder"]
photomaker_model.load_state_dict(data)
return (photomaker_model,)
class PhotoMakerEncodePlus:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"clip": ("CLIP",),
"photomaker": ("PHOTOMAKER",),
"image": ("IMAGE",),
"trigger_word": ("STRING", {"default": "img"}),
"text": ("STRING", {"multiline": True, "default": "photograph of a man img", "dynamicPrompts": True}),
},
}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "apply_photomaker"
CATEGORY = "PhotoMaker"
@torch.no_grad()
def apply_photomaker(self, clip: CLIP, photomaker: PhotoMakerIDEncoder, image: Tensor, trigger_word: str, text: str):
if (num_id_images:=len(image)) == 0:
raise ValueError("No image provided or found.")
trigger_word=trigger_word.strip()
tokens = clip.tokenize(text)
class_tokens_mask = {}
for key in tokens:
clip_tokenizer = getattr(clip.tokenizer, f'clip_{key}', clip.tokenizer)
tkwp = tokenize_with_weights(clip_tokenizer, text, return_tokens=True)
# e.g.: 24157
class_token = clip_tokenizer.tokenizer(trigger_word)["input_ids"][clip_tokenizer.tokens_start:-1][0]
tmp=[]
mask=[]
num = num_id_images
num_trigger_tokens_processed = 0
for ls in tkwp:
# recreate the list of pairs
p = []
pmask = []
# remove consecutive duplicates
newls = [ls[0]] + [curr for prev, curr in zip_longest(ls, ls[1:])
if not (curr and prev and curr[0] == class_token and prev[0] == class_token)]
if newls and newls[-1] is None: newls.pop()
for pair in newls:
# Non-matches simply get appended to the list.
if pair[0] != class_token:
p.append(pair)
pmask.append(pair)
else:
# Found a match; append it to the previous list or main list's last list
num_trigger_tokens_processed += 1
if p:
# take the last element of the list we're creating and repeat it
pmask[-1] = (-1, pmask[-1][1])
if num-1 > 0:
p.extend([p[-1]] * (num-1))
pmask.extend([( -1, pmask[-1][1] )] * (num-1))
else:
# The list we're cerating is empty so
# take the last element of the main list and then take its last element and repeat it
if tmp and tmp[-1]:
last_ls = tmp[-1]
last_pair = last_ls[-1]
mask[-1][-1] = (-1, mask[-1][-1][1])
if num-1 > 0:
last_ls.extend([last_pair] * (num-1))
mask[-1].extend([ (-1, mask[-1][-1][1]) ] * (num-1))
if p: tmp.append(p)
if pmask: mask.append(pmask)
token_weight_pairs = tmp
token_weight_pairs_mask = mask
# send it back to be batched evenly
token_weight_pairs = tokenize_with_weights(clip_tokenizer, text, tokens=token_weight_pairs)
token_weight_pairs_mask = tokenize_with_weights(clip_tokenizer, text, tokens=token_weight_pairs_mask)
tokens[key] = token_weight_pairs
# Finalize the mask
class_tokens_mask[key] = list(map(lambda a: list(map(lambda b: b[0] < 0, a)), token_weight_pairs_mask))
prompt_embeds, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
cond = prompt_embeds
device_orig = prompt_embeds.device
first_key = next(iter(class_tokens_mask.keys()))
class_tokens_mask = class_tokens_mask[first_key]
if num_trigger_tokens_processed > 1:
image = image.repeat([num_trigger_tokens_processed] + [1] * (len(image.shape) - 1))
photomaker = photomaker.to(device=photomaker.load_device)
_, h, w, _ = image.shape
do_resize = (h, w) != (224, 224)
image_bak = image
try:
if do_resize:
clip_preprocess = CLIPImageProcessor(resample=PILImageResampling.LANCZOS, do_normalize=False, do_rescale=False, do_convert_rgb=False)
image = clip_preprocess(image, return_tensors="pt").pixel_values.movedim(1,-1)
except RuntimeError as e:
image = image_bak
pixel_values = comfy.clip_vision.clip_preprocess(image.to(photomaker.load_device)).float()
cond = photomaker(id_pixel_values=pixel_values.unsqueeze(0), prompt_embeds=cond.to(photomaker.load_device),
class_tokens_mask=torch.tensor(class_tokens_mask, dtype=torch.bool, device=photomaker.load_device).unsqueeze(0))
cond = cond.to(device=device_orig)
return ([[cond, {"pooled_output": pooled}]],)
from .style_template import styles
class PhotoMakerStyles:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"style_name": (list(styles.keys()), {"default": "Photographic (Default)"}),
},
"optional": {
"positive": ("STRING", {"multiline": True, "forceInput": True, "dynamicPrompts": True}),
"negative": ("STRING", {"multiline": True, "forceInput": True, "dynamicPrompts": True}),
},
}
RETURN_TYPES = ("STRING","STRING",)
RETURN_NAMES = ("POSITIVE","NEGATIVE",)
FUNCTION = "apply_photomaker_style"
CATEGORY = "PhotoMaker"
def apply_photomaker_style(self, style_name, positive: str = '', negative: str = ''):
p, n = styles.get(style_name, "Photographic (Default)")
return p.replace("{prompt}", positive), n + ' ' + negative
class PrepImagesForClipVisionFromPath:
def __init__(self) -> None:
self.image_loader = LoadImageCustom()
self.load_device = comfy.model_management.text_encoder_device()
self.offload_device = comfy.model_management.text_encoder_offload_device()
@classmethod
def INPUT_TYPES(s):
return {"required": {
"path": ("STRING", {"multiline": False}),
"interpolation": (["nearest", "bilinear", "box", "bicubic", "lanczos", "hamming"], {"default": "lanczos"}),
"crop_position": (["top", "bottom", "left", "right", "center", "pad"], {"default": "center"}),
},
}
@classmethod
def IS_CHANGED(s, path:str, interpolation, crop_position):
image_path_list = s.get_images_paths(path)
hashes = []
for image_path in image_path_list:
if not (path.startswith("http://") or path.startswith("https://")):
m = hashlib.sha256()
with open(image_path, 'rb') as f:
m.update(f.read())
hashes.append(m.digest().hex())
return Counter(hashes)
@classmethod
def VALIDATE_INPUTS(s, path:str, interpolation, crop_position):
image_path_list = s.get_images_paths(path)
if len(image_path_list) == 0:
return "No image provided or found."
return True
RETURN_TYPES = ("IMAGE",)
FUNCTION = "prep_images_for_clip_vision_from_path"
CATEGORY = "ipadapter"
@classmethod
def get_images_paths(self, path:str):
image_path_list = []
path = path.strip()
if path:
image_path_list = [path]
if not (path.startswith("http://") or path.startswith("https://")) and os.path.isdir(path):
image_basename_list = os.listdir(path)
image_path_list = [
os.path.join(path, basename)
for basename in image_basename_list
if not basename.startswith('.') and basename.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.webp', '.gif'))
]
return image_path_list
def prep_images_for_clip_vision_from_path(self, path:str, interpolation:str, crop_position,):
image_path_list = self.get_images_paths(path)
if len(image_path_list) == 0:
raise ValueError("No image provided or found.")
interpolation=interpolation.upper()
size = (224, 224)
try:
input_id_images = [img if (img:=load_image(image_path)).size == size else crop_image_pil(img, crop_position) for image_path in image_path_list]
do_resize = not all(img.size == size for img in input_id_images)
resample = getattr(PILImageResampling, interpolation)
clip_preprocess = CLIPImageProcessor(resample=resample, do_normalize=False, do_resize=do_resize)
id_pixel_values = clip_preprocess(input_id_images, return_tensors="pt").pixel_values.movedim(1,-1)
except TypeError as err:
print('[PhotoMaker]:', err)
print('[PhotoMaker]: You may need to update transformers.')
input_id_images = [self.image_loader.load_image(image_path)[0] for image_path in image_path_list]
do_resize = not all(img.shape[-3:-3+2] == size for img in input_id_images)
if do_resize:
id_pixel_values = torch.cat([prepImage(img, interpolation=interpolation, crop_position=crop_position) for img in input_id_images])
else:
id_pixel_values = torch.cat(input_id_images)
return (id_pixel_values,)
supported = False
try:
from comfy_extras.nodes_photomaker import PhotoMakerLoader as _PhotoMakerLoader
supported = True
except: ...
NODE_CLASS_MAPPINGS = {
**({} if supported else {"PhotoMakerLoader": PhotoMakerLoader}),
"PhotoMakerEncodePlus": PhotoMakerEncodePlus,
"PhotoMakerStyles": PhotoMakerStyles,
"PrepImagesForClipVisionFromPath": PrepImagesForClipVisionFromPath,
}
NODE_DISPLAY_NAME_MAPPINGS = {
**({} if supported else {"PhotoMakerLoader": "Load PhotoMaker"}),
"PhotoMakerEncodePlus": "PhotoMaker Encode Plus",
"PhotoMakerStyles": "Apply PhotoMaker Style",
"PrepImagesForClipVisionFromPath": "Prepare Images For CLIP Vision From Path",
}
|