File size: 16,545 Bytes
1e3b872 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
import os
import sys
import PIL
import PIL.Image
import PIL.ImageOps
import inspect
import importlib
import types
import functools
from textwrap import dedent, indent
from copy import copy
import torch
from typing import List, Union
from collections import namedtuple
from .model import PhotoMakerIDEncoder
import comfy.sd1_clip
from comfy.sd1_clip import escape_important, token_weights, unescape_important
import torch.nn.functional as F
import torchvision.transforms as TT
Hook = namedtuple('Hook', ['fn', 'module_name', 'target', 'orig_key', 'module_name_nt', 'module_name_unix'])
def hook_clip_model_CLIPVisionModelProjection():
return create_hook(PhotoMakerIDEncoder, 'comfy.clip_model', 'CLIPVisionModelProjection')
def hook_tokenize_with_weights():
import comfy.sd1_clip
if not hasattr(comfy.sd1_clip.SDTokenizer, 'tokenize_with_weights_original'):
comfy.sd1_clip.SDTokenizer.tokenize_with_weights_original = comfy.sd1_clip.SDTokenizer.tokenize_with_weights
comfy.sd1_clip.SDTokenizer.tokenize_with_weights = tokenize_with_weights
return create_hook(tokenize_with_weights, 'comfy.sd1_clip', 'SDTokenizer.tokenize_with_weights')
def hook_load_torch_file():
import comfy.utils
if not hasattr(comfy.utils, 'load_torch_file_original'):
comfy.utils.load_torch_file_original = comfy.utils.load_torch_file
replace_str="""
if sd.get('id_encoder', None) and (lora_weights:=sd.get('lora_weights', None)) and len(sd) == 2:
def find_outer_instance(target:str, target_type):
import inspect
frame = inspect.currentframe()
i = 0
while frame and i < 5:
if (found:=frame.f_locals.get(target, None)) is not None:
if isinstance(found, target_type):
return found
frame = frame.f_back
i += 1
return None
if find_outer_instance('lora_name', str) is not None:
sd = lora_weights
return sd"""
source = inspect.getsource(comfy.utils.load_torch_file_original)
modified_source = source.replace("return sd", replace_str)
fn = write_to_file_and_return_fn(comfy.utils.load_torch_file_original, modified_source, 'w')
return create_hook(fn, 'comfy.utils')
def create_hook(fn, module_name, target = None, orig_key = None):
if target is None: target = fn.__name__
if orig_key is None: orig_key = f'{target}_original'
module_name_nt = '\\'.join(module_name.split('.'))
module_name_unix = '/'.join(module_name.split('.'))
return Hook(fn, module_name, target, orig_key, module_name_nt, module_name_unix)
def hook_all(restore=False, hooks = None):
if hooks is None:
hooks: List[Hook] = [
hook_clip_model_CLIPVisionModelProjection(),
]
for m in list(sys.modules.keys()):
for hook in hooks:
if hook.module_name == m or (os.name != 'nt' and m.endswith(hook.module_name_unix)) or (os.name == 'nt' and m.endswith(hook.module_name_nt)):
if hasattr(sys.modules[m], hook.target):
if not hasattr(sys.modules[m], hook.orig_key):
if (orig_fn:=getattr(sys.modules[m], hook.target, None)) is not None:
setattr(sys.modules[m], hook.orig_key, orig_fn)
if restore:
setattr(sys.modules[m], hook.target, getattr(sys.modules[m], hook.orig_key, None))
else:
setattr(sys.modules[m], hook.target, hook.fn)
def tokenize_with_weights(self: comfy.sd1_clip.SDTokenizer, text:str, return_word_ids=False, tokens=None, return_tokens=False):
'''
Takes a prompt and converts it to a list of (token, weight, word id) elements.
Tokens can both be integer tokens and pre computed CLIP tensors.
Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens.
Returned list has the dimensions NxM where M is the input size of CLIP
'''
if self.pad_with_end:
pad_token = self.end_token
else:
pad_token = 0
if tokens is None:
tokens = []
if not tokens:
text = escape_important(text)
parsed_weights = token_weights(text, 1.0)
#tokenize words
tokens = []
for weighted_segment, weight in parsed_weights:
to_tokenize = unescape_important(weighted_segment).replace("\n", " ").split(' ')
to_tokenize = [x for x in to_tokenize if x != ""]
for word in to_tokenize:
#if we find an embedding, deal with the embedding
if word.startswith(self.embedding_identifier) and self.embedding_directory is not None:
embedding_name = word[len(self.embedding_identifier):].strip('\n')
embed, leftover = self._try_get_embedding(embedding_name)
if embed is None:
print(f"warning, embedding:{embedding_name} does not exist, ignoring")
else:
if len(embed.shape) == 1:
tokens.append([(embed, weight)])
else:
tokens.append([(embed[x], weight) for x in range(embed.shape[0])])
#if we accidentally have leftover text, continue parsing using leftover, else move on to next word
if leftover != "":
word = leftover
else:
continue
#parse word
tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][self.tokens_start:-1]])
if return_tokens: return tokens
#reshape token array to CLIP input size
batched_tokens = []
batch = []
if self.start_token is not None:
batch.append((self.start_token, 1.0, 0))
batched_tokens.append(batch)
for i, t_group in enumerate(tokens):
#determine if we're going to try and keep the tokens in a single batch
is_large = len(t_group) >= self.max_word_length
while len(t_group) > 0:
if len(t_group) + len(batch) > self.max_length - 1:
remaining_length = self.max_length - len(batch) - 1
#break word in two and add end token
if is_large:
batch.extend([(t,w,i+1) for t,w in t_group[:remaining_length]])
batch.append((self.end_token, 1.0, 0))
t_group = t_group[remaining_length:]
#add end token and pad
else:
batch.append((self.end_token, 1.0, 0))
if self.pad_to_max_length:
batch.extend([(pad_token, 1.0, 0)] * (remaining_length))
#start new batch
batch = []
if self.start_token is not None:
batch.append((self.start_token, 1.0, 0))
batched_tokens.append(batch)
else:
batch.extend([(t,w,i+1) for t,w in t_group])
t_group = []
#fill last batch
batch.append((self.end_token, 1.0, 0))
if self.pad_to_max_length:
batch.extend([(pad_token, 1.0, 0)] * (self.max_length - len(batch)))
if not return_word_ids:
batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]
return batched_tokens
def load_pil_image(image: Union[str, PIL.Image.Image]) -> PIL.Image.Image:
if isinstance(image, str):
if image.startswith("http://") or image.startswith("https://"):
import requests
img = Image.open(requests.get(image, stream=True).raw)
elif os.path.isfile(image):
image_path = folder_paths.get_annotated_filepath(image)
img = Image.open(image_path)
else:
raise ValueError(
f"Incorrect path or url, URLs must start with `http://` or `https://`, and {image} is not a valid path"
)
elif isinstance(image, PIL.Image.Image):
image = image
else:
raise ValueError(
"Incorrect format used for image. Should be an url linking to an image, a local path, or a PIL image."
)
return img
# from diffusers.utils import load_image
def load_image(image: Union[str, PIL.Image.Image]) -> PIL.Image.Image:
"""
Loads `image` to a PIL Image.
Args:
image (`str` or `PIL.Image.Image`):
The image to convert to the PIL Image format.
Returns:
`PIL.Image.Image`:
A PIL Image.
"""
image = load_pil_image(image)
image = PIL.ImageOps.exif_transpose(image)
image = image.convert("RGB")
return image
from PIL import Image, ImageSequence, ImageOps
import numpy as np
import folder_paths
from nodes import LoadImage
class LoadImageCustom(LoadImage):
def load_image(self, image):
# image_path = folder_paths.get_annotated_filepath(image)
# img = Image.open(image_path)
img = load_pil_image(image)
output_images = []
output_masks = []
for i in ImageSequence.Iterator(img):
i = ImageOps.exif_transpose(i)
if i.mode == 'I':
i = i.point(lambda i: i * (1 / 255))
image = i.convert("RGB")
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
if 'A' in i.getbands():
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
mask = 1. - torch.from_numpy(mask)
else:
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
output_images.append(image)
output_masks.append(mask.unsqueeze(0))
if len(output_images) > 1:
output_image = torch.cat(output_images, dim=0)
output_mask = torch.cat(output_masks, dim=0)
else:
output_image = output_images[0]
output_mask = output_masks[0]
return (output_image, output_mask)
def crop_image_pil(image, crop_position):
"""
Crop a PIL image based on the specified crop_position.
Parameters:
- image: PIL Image object
- crop_position: One of "top", "bottom", "left", "right", "center", or "pad"
Returns:
- Cropped PIL Image object
"""
width, height = image.size
left, top, right, bottom = 0, 0, width, height
if "pad" in crop_position:
target_length = max(width, height)
pad_l = max((target_length - width) // 2, 0)
pad_t = max((target_length - height) // 2, 0)
return ImageOps.expand(image, border=(pad_l, pad_t, target_length - width - pad_l, target_length - height - pad_t), fill=0)
else:
crop_size = min(width, height)
x = (width - crop_size) // 2
y = (height - crop_size) // 2
if "top" in crop_position:
bottom = top + crop_size
elif "bottom" in crop_position:
top = height - crop_size
bottom = height
elif "left" in crop_position:
right = left + crop_size
elif "right" in crop_position:
left = width - crop_size
right = width
return image.crop((left, top, right, bottom))
def prepImages(images, *args, **kwargs):
to_tensor = TT.ToTensor()
images_ = []
for img in images:
image = to_tensor(img)
if len(image.shape) <= 3: image.unsqueeze_(0)
images_.append(prepImage(image.movedim(1,-1), *args, **kwargs))
return torch.cat(images_)
def prepImage(image, interpolation="LANCZOS", crop_position="center", size=(224,224), sharpening=0.0, padding=0):
_, oh, ow, _ = image.shape
output = image.permute([0,3,1,2])
if "pad" in crop_position:
target_length = max(oh, ow)
pad_l = (target_length - ow) // 2
pad_r = (target_length - ow) - pad_l
pad_t = (target_length - oh) // 2
pad_b = (target_length - oh) - pad_t
output = F.pad(output, (pad_l, pad_r, pad_t, pad_b), value=0, mode="constant")
else:
crop_size = min(oh, ow)
x = (ow-crop_size) // 2
y = (oh-crop_size) // 2
if "top" in crop_position:
y = 0
elif "bottom" in crop_position:
y = oh-crop_size
elif "left" in crop_position:
x = 0
elif "right" in crop_position:
x = ow-crop_size
x2 = x+crop_size
y2 = y+crop_size
# crop
output = output[:, :, y:y2, x:x2]
# resize (apparently PIL resize is better than torchvision interpolate)
imgs = []
to_PIL_image = TT.ToPILImage()
to_tensor = TT.ToTensor()
for i in range(output.shape[0]):
img = to_PIL_image(output[i])
img = img.resize(size, resample=PIL.Image.Resampling[interpolation])
imgs.append(to_tensor(img))
output = torch.stack(imgs, dim=0)
imgs = None # zelous GC
if padding > 0:
output = F.pad(output, (padding, padding, padding, padding), value=255, mode="constant")
output = output.permute([0,2,3,1])
return output
def inject_code(original_func, data, mode='a'):
# Get the source code of the original function
original_source = inspect.getsource(original_func)
# Split the source code into lines
lines = original_source.split("\n")
for item in data:
# Find the line number of the target line
target_line_number = None
for i, line in enumerate(lines):
if item['target_line'] not in line: continue
target_line_number = i + 1
if item.get("mode","insert") == "replace":
lines[i] = lines[i].replace(item['target_line'], item['code_to_insert'])
break
# Find the indentation of the line where the new code will be inserted
indentation = ''
for char in line:
if char == ' ':
indentation += char
else:
break
# Indent the new code to match the original
code_to_insert = item['code_to_insert']
if item.get("dedent",True):
code_to_insert = dedent(item['code_to_insert'])
code_to_insert = indent(code_to_insert, indentation)
break
# Insert the code to be injected after the target line
if item.get("mode","insert") == "insert" and target_line_number is not None:
lines.insert(target_line_number, code_to_insert)
# Recreate the modified source code
modified_source = "\n".join(lines)
modified_source = dedent(modified_source.strip("\n"))
return write_to_file_and_return_fn(original_func, modified_source, mode)
def write_to_file_and_return_fn(original_func, source:str, mode='a'):
# Write the modified source code to a temporary file so the
# source code and stack traces can still be viewed when debugging.
custom_name = ".patches.py"
current_dir = os.path.dirname(os.path.abspath(__file__))
temp_file_path = os.path.join(current_dir, custom_name)
with open(temp_file_path, mode) as temp_file:
temp_file.write(source)
temp_file.write("\n")
temp_file.flush()
MODULE_PATH = temp_file.name
MODULE_NAME = __name__.split('.')[0].replace('-','_') + "_patch_modules"
spec = importlib.util.spec_from_file_location(MODULE_NAME, MODULE_PATH)
module = importlib.util.module_from_spec(spec)
sys.modules[spec.name] = module
spec.loader.exec_module(module)
# Retrieve the modified function from the module
modified_function = getattr(module, original_func.__name__)
# Adapted from https://stackoverflow.com/a/49077211
def copy_func(f, globals=None, module=None, code=None, update_wrapper=True):
if globals is None: globals = f.__globals__
if code is None: code = f.__code__
g = types.FunctionType(code, globals, name=f.__name__,
argdefs=f.__defaults__, closure=f.__closure__)
if update_wrapper: g = functools.update_wrapper(g, f)
if module is not None: g.__module__ = module
g.__kwdefaults__ = copy(f.__kwdefaults__)
return g
return copy_func(original_func, code=modified_function.__code__, update_wrapper=False)
hook_all(hooks=[
# hook_tokenize_with_weights(),
hook_load_torch_file(),
]) |