File size: 16,353 Bytes
1e3b872 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
import openai
import time
import urllib.error
import re,json,os,string,random
import folder_paths
import hashlib
import codecs,sys
import importlib.util
def is_installed(package):
try:
spec = importlib.util.find_spec(package)
except ModuleNotFoundError:
return False
return spec is not None
def get_unique_hash(string):
hash_object = hashlib.sha1(string.encode())
unique_hash = hash_object.hexdigest()
return unique_hash
def generate_random_string(length):
letters = string.ascii_letters + string.digits
return ''.join(random.choice(letters) for _ in range(length))
class AnyType(str):
"""A special class that is always equal in not equal comparisons. Credit to pythongosssss"""
def __ne__(self, __value: object) -> bool:
return False
any_type = AnyType("*")
# 判断是否是azure服务
def is_azure_url(url):
pattern = r'.*\.azure\.com$'
if re.match(pattern, url):
return True
else:
return False
def azure_client(key,url):
client = openai.AzureOpenAI(
api_key=key,
# https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#rest-api-versioning
api_version="2023-07-01-preview",
# https://learn.microsoft.com/en-us/azure/cognitive-services/openai/how-to/create-resource?pivots=web-portal#create-a-resource
azure_endpoint=url
)
return client
def openai_client(key,url):
client = openai.OpenAI(
api_key=key,
base_url=url
)
return client
def ZhipuAI_client(key):
try:
if is_installed('zhipuai')==False:
import subprocess
# 安装
print('#pip install zhipuai')
result = subprocess.run([sys.executable, '-s', '-m', 'pip', 'install', 'zhipuai'], capture_output=True, text=True)
#检查命令执行结果
if result.returncode == 0:
print("#install success")
from zhipuai import ZhipuAI
else:
print("#install error")
else:
from zhipuai import ZhipuAI
except:
print("#install zhipuai error")
client = ZhipuAI(
api_key=key, # 填写您的 APIKey
)
return client
# 优先使用phi
def phi_sort(lst):
return sorted(lst, key=lambda x: x.lower().count('phi'), reverse=True)
def get_llama_path():
try:
return folder_paths.get_folder_paths('llamafile')[0]
except:
return os.path.join(folder_paths.models_dir, "llamafile")
def get_llama_models():
res=[]
model_path=get_llama_path()
if os.path.exists(model_path):
files = os.listdir(model_path)
for file in files:
if os.path.isfile(os.path.join(model_path, file)):
res.append(file)
res=phi_sort(res)
return res
llama_modes_list=get_llama_models()
def get_llama_model_path(file_name):
model_path=get_llama_path()
mp=os.path.join(model_path,file_name)
return mp
def llama_cpp_client(file_name):
try:
if is_installed('llama_cpp')==False:
import subprocess
# 安装
print('#pip install llama-cpp-python')
result = subprocess.run([sys.executable, '-s', '-m', 'pip',
'install',
'llama-cpp-python',
'--extra-index-url',
'https://abetlen.github.io/llama-cpp-python/whl/cu121'
], capture_output=True, text=True)
#检查命令执行结果
if result.returncode == 0:
print("#install success")
from llama_cpp import Llama
subprocess.run([sys.executable, '-s', '-m', 'pip',
'install',
'llama-cpp-python[server]'
], capture_output=True, text=True)
else:
print("#install error")
else:
from llama_cpp import Llama
except:
print("#install llama-cpp-python error")
if file_name:
mp=get_llama_model_path(file_name)
# file_name=get_llama_models()[0]
# model_path=os.path.join(folder_paths.models_dir, "llamafile")
# mp=os.path.join(model_path,file_name)
llm = Llama(model_path=mp, chat_format="chatml",n_gpu_layers=-1,n_ctx=512)
return llm
def chat(client, model_name,messages ):
try_count = 0
while True:
try_count += 1
try:
if hasattr(client, "chat"):
response = client.chat.completions.create(
model=model_name,
messages=messages
)
else:
# 是llama的
response = client.create_chat_completion_openai_v1(
messages=messages,
# response_format={
# "type": "json_object",
# },
# temperature=0.7,
)
break
except openai.AuthenticationError as ex:
raise ex
except (urllib.error.HTTPError, openai.OpenAIError) as ex:
if try_count >= 3:
raise ex
time.sleep(3)
continue
# print(response.keys())
finish_reason = response.choices[0].finish_reason
if finish_reason != "stop":
raise RuntimeError("API finished with unexpected reason: " + finish_reason)
content=""
try:
content=response.choices[0].message.content
except:
content=response.choices[0].delta['content']
return content
class ChatGPTNode:
def __init__(self):
# self.__client = OpenAI()
self.session_history = [] # 用于存储会话历史的列表
# self.seed=0
self.system_content="You are ChatGPT, a large language model trained by OpenAI. Answer as concisely as possible."
@classmethod
def INPUT_TYPES(cls):
model_list=llama_modes_list+[
"gpt-3.5-turbo",
"gpt-3.5-turbo-16k",
"gpt-4o",
"gpt-4o-2024-05-13",
"gpt-4",
"gpt-4-0314",
"gpt-4-0613",
"gpt-3.5-turbo-0301",
"gpt-3.5-turbo-0613",
"gpt-3.5-turbo-16k-0613",
"qwen-turbo",
"qwen-plus",
"qwen-long",
"qwen-max",
"qwen-max-longcontext",
"glm-4",
"glm-3-turbo",
"moonshot-v1-8k",
"moonshot-v1-32k",
"moonshot-v1-128k",
"deepseek-chat"
]
return {
"required": {
"api_key":("KEY", {"default": "", "multiline": True,"dynamicPrompts": False}),
"api_url":("URL", {"default": "", "multiline": True,"dynamicPrompts": False}),
"prompt": ("STRING", {"multiline": True,"dynamicPrompts": False}),
"system_content": ("STRING",
{
"default": "You are ChatGPT, a large language model trained by OpenAI. Answer as concisely as possible.",
"multiline": True,"dynamicPrompts": False
}),
"model": ( model_list,
{"default": model_list[0]}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "step": 1}),
"context_size":("INT", {"default": 1, "min": 0, "max":30, "step": 1}),
},
"hidden": {
"unique_id": "UNIQUE_ID",
"extra_pnginfo": "EXTRA_PNGINFO",
},
}
RETURN_TYPES = ("STRING","STRING","STRING",)
RETURN_NAMES = ("text","messages","session_history",)
FUNCTION = "generate_contextual_text"
CATEGORY = "♾️Mixlab/GPT"
INPUT_IS_LIST = False
OUTPUT_IS_LIST = (False,False,False,)
def generate_contextual_text(self,
api_key,
api_url,
prompt,
system_content,
model,
seed,context_size,unique_id = None, extra_pnginfo=None):
# print(api_key!='',api_url,prompt,system_content,model,seed)
# 可以选择保留会话历史以维持上下文记忆
# 或者在此处清除会话历史 self.session_history.clear()
# if seed!=self.seed:
# self.seed=seed
# self.session_history=[]
# 把系统信息和初始信息添加到会话历史中
if system_content:
self.system_content=system_content
# self.session_history=[]
# self.session_history.append({"role": "system", "content": system_content})
#
if is_azure_url(api_url):
client=azure_client(api_key,api_url)
else:
# 根据用户选择的模型,设置相应的接口和模型名称
if model == "glm-4" :
client = ZhipuAI_client(api_key) # 使用 Zhipuai 的接口
print('using Zhipuai interface')
elif model in llama_modes_list:
#
client=llama_cpp_client(model)
else :
client = openai_client(api_key,api_url) # 使用 ChatGPT 的接口
print('using ChatGPT interface')
# 把用户的提示添加到会话历史中
# 调用API时传递整个会话历史
def crop_list_tail(lst, size):
if size >= len(lst):
return lst
elif size==0:
return []
else:
return lst[-size:]
session_history=crop_list_tail(self.session_history,context_size)
messages=[{"role": "system", "content": self.system_content}]+session_history+[{"role": "user", "content": prompt}]
response_content = chat(client,model,messages)
self.session_history=self.session_history+[{"role": "user", "content": prompt}]+[{'role':'assistant',"content":response_content}]
# if unique_id and extra_pnginfo and "workflow" in extra_pnginfo[0]:
# workflow = extra_pnginfo[0]["workflow"]
# node = next((x for x in workflow["nodes"] if str(x["id"]) == unique_id[0]), None)
# if node:
# node["widgets_values"] = ["",
# api_url,
# prompt,
# system_content,
# model,
# seed,
# context_size]
return (response_content,json.dumps(messages, indent=4),json.dumps(self.session_history, indent=4),)
class ShowTextForGPT:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"text": ("STRING", {"forceInput": True,"dynamicPrompts": False}),
},
"optional":{
"output_dir": ("STRING",{"forceInput": True,"default": "","multiline": True,"dynamicPrompts": False}),
}
}
INPUT_IS_LIST = True
RETURN_TYPES = ("STRING",)
FUNCTION = "run"
OUTPUT_NODE = True
OUTPUT_IS_LIST = (True,)
CATEGORY = "♾️Mixlab/Text"
def run(self, text,output_dir=[""]):
# 类型纠正
texts=[]
for t in text:
if not isinstance(t, str):
t = str(t)
texts.append(t)
text=texts
if len(output_dir)==1 and (output_dir[0]=='' or os.path.dirname(output_dir[0])==''):
t='\n'.join(text)
output_dir=[
os.path.join(folder_paths.get_temp_directory(),
get_unique_hash(t)+'.txt'
)
]
elif len(output_dir)==1:
base=os.path.basename(output_dir[0])
t='\n'.join(text)
if base=='' or os.path.splitext(base)[1]=='':
base=get_unique_hash(t)+'.txt'
output_dir=[
os.path.join(output_dir[0],
base
)
]
# elif len(output_dir)>1:
if len(output_dir)==1 and len(text)>1:
output_dir=[output_dir[0] for _ in range(len(text))]
for i in range(len(text)):
o_fp=output_dir[i]
dirp=os.path.dirname(o_fp)
if dirp=='':
dirp=folder_paths.get_temp_directory()
o_fp=os.path.join(folder_paths.get_temp_directory(),o_fp
)
if not os.path.exists(dirp):
os.mkdir(dirp)
if not os.path.splitext(o_fp)[1].lower()=='.txt':
o_fp=o_fp+'.txt'
t=text[i]
with open(o_fp, 'w') as file:
file.write(t)
# print(text)
return {"ui": {"text": text}, "result": (text,)}
class CharacterInText:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"text": ("STRING", {"multiline": True,"dynamicPrompts": False}),
"character": ("STRING", {"multiline": True,"dynamicPrompts": False}),
"start_index": ("INT", {
"default": 1,
"min": 0, #Minimum value
"max": 1024, #Maximum value
"step": 1, #Slider's step
"display": "number" # Cosmetic only: display as "number" or "slider"
}),
}
}
INPUT_IS_LIST = False
RETURN_TYPES = ("INT",)
FUNCTION = "run"
# OUTPUT_NODE = True
OUTPUT_IS_LIST = (False,)
CATEGORY = "♾️Mixlab/Text"
def run(self, text,character,start_index):
# print(text,character,start_index)
b=1 if character.lower() in text.lower() else 0
return (b+start_index,)
class TextSplitByDelimiter:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"text": ("STRING", {"multiline": True,"dynamicPrompts": False}),
"delimiter":("STRING", {"multiline": False,"default":",","dynamicPrompts": False}),
"start_index": ("INT", {
"default": 0,
"min": 0, #Minimum value
"max": 1000, #Maximum value
"step": 1, #Slider's step
"display": "number" # Cosmetic only: display as "number" or "slider"
}),
"skip_every": ("INT", {
"default": 0,
"min": 0, #Minimum value
"max": 10, #Maximum value
"step": 1, #Slider's step
"display": "number" # Cosmetic only: display as "number" or "slider"
}),
"max_count": ("INT", {
"default": 10,
"min": 1, #Minimum value
"max": 1000, #Maximum value
"step": 1, #Slider's step
"display": "number" # Cosmetic only: display as "number" or "slider"
}),
}
}
INPUT_IS_LIST = False
RETURN_TYPES = ("STRING",)
FUNCTION = "run"
# OUTPUT_NODE = True
OUTPUT_IS_LIST = (True,)
CATEGORY = "♾️Mixlab/Text"
def run(self, text,delimiter,start_index,skip_every,max_count):
if delimiter=="":
arr=[text.strip()]
else:
delimiter=codecs.decode(delimiter, 'unicode_escape')
arr= [line for line in text.split(delimiter) if line.strip()]
arr= arr[start_index:start_index + max_count * (skip_every+1):(skip_every+1)]
return (arr,)
|