File size: 3,231 Bytes
1e3b872 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import os,sys
import folder_paths
from PIL import Image
import importlib.util
import numpy as np
import torch
global _available
_available=False
def is_installed(package):
try:
spec = importlib.util.find_spec(package)
except ModuleNotFoundError:
return False
return spec is not None
if is_installed('simple_lama_inpainting')==False:
import subprocess
from packaging import version
if version.parse(torch.__version__)>=version.parse('2.1'):
# 安装
print('#pip install simple_lama_inpainting')
result = subprocess.run([sys.executable, '-s', '-m', 'pip', 'install', 'simple_lama_inpainting'], capture_output=True, text=True)
#检查命令执行结果
if result.returncode == 0:
print("#install success")
from simple_lama_inpainting import SimpleLama
_available=True
else:
print("#install error")
else:
print('#pls check your torch version >= 2.1')
else:
from simple_lama_inpainting import SimpleLama
_available=True
def get_lama_path():
try:
return folder_paths.get_folder_paths('lama')[0]
except:
return os.path.join(folder_paths.models_dir, "lama")
llma_model_path=os.path.join(get_lama_path(), "big-lama.pt")
if not os.path.exists(llma_model_path):
os.environ['LAMA_MODEL']=''
print(f"## lama torchscript model not found: {llma_model_path},pls download from https://github.com/enesmsahin/simple-lama-inpainting/releases/download/v0.1.0/big-lama.pt")
else:
os.environ['LAMA_MODEL'] = llma_model_path
# Tensor to PIL
def tensor2pil(image):
return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))
# Convert PIL to Tensor
def pil2tensor(image):
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)
# simple_lama = SimpleLama()
# img_path = "image.png"
# mask_path = "mask.png"
# image = Image.open(img_path)
# mask = Image.open(mask_path).convert('L')
# result = simple_lama(image, mask)
# result.save("inpainted.png")
class LaMaInpainting:
global _available
available=_available
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image": ("IMAGE",),
"mask": ("MASK",),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Image"
INPUT_IS_LIST = True
OUTPUT_IS_LIST = (True,)
global simple_lama
simple_lama = None
def run(self,image,mask):
global simple_lama
result=[]
if simple_lama==None:
simple_lama = SimpleLama()
else:
simple_lama.model.to("cuda" if torch.cuda.is_available() else "cpu")
for i in range(len(image)):
im=image[i]
ma=mask[i]
im=tensor2pil(im)
ma=tensor2pil(ma)
ma =ma.convert('L')
res = simple_lama(im, ma)
res=pil2tensor(res)
result.append(res)
# result.save("inpainted.png")
if simple_lama.device=='cuda':
simple_lama.model.to('cpu')
return (result,) |