File size: 22,429 Bytes
1e3b872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
import random
import comfy.utils
import os
import numpy as np
from urllib import request, parse
import folder_paths
from PIL import Image, ImageOps,ImageFilter,ImageEnhance,ImageDraw,ImageSequence, ImageFont
from PIL.PngImagePlugin import PngInfo

import hashlib
import requests
import json


# def queue_prompt(prompt_workflow):
#     p = {"prompt": prompt_workflow}
#     data = json.dumps(p).encode('utf-8')
#     req =  request.Request("http://127.0.0.1:8188/prompt", data=data)
#     request.urlopen(req)    

embeddings_path=os.path.join(folder_paths.models_dir, "embeddings")

def get_files_with_extension(directory, extension):
    
    file_list = []
    for root, dirs, files in os.walk(directory):
        for file in files:
            if file.endswith(extension):
                file_name = os.path.splitext(file)[0]
                file_list.append(file_name)
    return file_list

def join_with_(text_list,delimiter):
    joined_text = delimiter.join(text_list)
    return joined_text



def load_json(file_path):
    try:
        with open(file_path, 'r') as json_file:
            data = json.load(json_file)
            return data
    except FileNotFoundError:
        print(f"File not found: {file_path}")
        return None
    except json.JSONDecodeError:
        print(f"Error decoding JSON in file: {file_path}")
        return None

def save_json(data_dict, file_path):
    try:
        with open(file_path, 'w') as json_file:
            json.dump(data_dict, json_file, indent=4)
            print(f"Data saved to {file_path}")
    except Exception as e:
        print(f"Error saving JSON to file: {e}")

# pysss的lora加载器
# def get_model_version_info(hash_value):
#     # http://127.0.0.1:1082
#     proxies = {'http': 'http://127.0.0.1:1082', 'https': 'https://127.0.0.1:1082'}
#     api_url = f"https://civitai.com/api/v1/model-versions/by-hash/{hash_value}"
#     print(api_url)
#     response = requests.get(api_url,proxies=proxies, verify=False)
    
#     if response.status_code == 200:
#         return response.json()
#     else:
#         return None
    
# def calculate_sha256(file_path):
#     sha256_hash = hashlib.sha256()
#     with open(file_path, "rb") as f:
#         for chunk in iter(lambda: f.read(4096), b""):
#             sha256_hash.update(chunk)
#     return sha256_hash.hexdigest()




class AnyType(str):
  """A special class that is always equal in not equal comparisons. Credit to pythongosssss"""

  def __ne__(self, __value: object) -> bool:
    return False

any_type = AnyType("*")


default_prompt1='''Swing
                                                Slide
                                                Climbing frame
                                                Sandbox
                                                See-saw
                                                Merry-go-round
                                                Jungle gym
                                                Trampoline
                                                Monkey bars
                                                Rocking horse
                                                Playhouse
                                                Hopscotch
                                                Balance beam
                                                Spring rider
                                                Water play area
                                                Ball pit
                                                Tunnel
                                                Zip line
                                                Basketball hoop
                                                Bicycle rack
                                                Spinner
                                                Climbing wall
                                                Rope ladder
                                                Tetherball
                                                Flying fox
                                                Swinging bridge
                                                Spiral slide
                                                Water sprinkler
                                                Pedal go-kart
                                                Miniature golf course
                                                '''
default_prompt1="\n".join([p.strip() for p in default_prompt1.split('\n') if p.strip()!=''])


def tensor2pil(image):
    return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))

def addWeight(text, weight=1):
    if weight == 1:
        return text
    else:
        return f"({text}:{round(weight,3)})"

def prompt_delete_words(sentence, new_words_length):
    # 使用逗号分割句子,并去除空格
    words = [word.strip() for word in sentence.split(",")]
    
    # 计算需要删除的单词数量
    num_to_delete = len(words) - new_words_length
    
    words_to=[w for w in words]

    # 逐个删除单词并存储在新列表中
    new_words = []
    for i in range(len(words)):
        if num_to_delete > 0:
            num_to_delete -= 1
        else:
            words_to.pop()
            if len(words_to)>0:
                new_words.append(", ".join(words_to))
         
    return new_words

# # 测试方法
# sentence = "a computer, a glass tablet with a keyboard on a dark background, 3d illustration, reflection, cgi 8k, clear glass, archaic, cut-away, white outline"
# new_words_length = 5
# result = prompt_delete_words(sentence, new_words_length)
# print(result)

class PromptImage:
    def __init__(self):
        self.output_dir = folder_paths.get_output_directory()
        self.type = "output"
        self.prefix_append = "PromptImage"
        self.compress_level = 4

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "prompts": ("STRING", 
                         {
                            "multiline": True, 
                            "default": '',
                            "dynamicPrompts": False
                          }),

                "images": ("IMAGE",{"default": None}), 
                 "save_to_image": (["enable", "disable"],),
                }
            }
    
    RETURN_TYPES = ()
   
    OUTPUT_NODE = True

    INPUT_IS_LIST = True

    FUNCTION = "run"

    CATEGORY = "♾️Mixlab/Output"

    # 运行的函数
    def run(self,prompts,images,save_to_image):
        filename_prefix="mixlab_"
        filename_prefix += self.prefix_append
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
            filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
        
        results = list()

        save_to_image=save_to_image[0]=='enable'

        for index in range(len(images)):
            res=[]
            imgs=images[index]

            for image in imgs:
                img=tensor2pil(image)

                metadata = None
                if save_to_image:
                    metadata = PngInfo()
                    prompt_text=prompts[index]
                    if prompt_text is not None:
                        metadata.add_text("prompt_text", prompt_text)
                    
                file = f"{filename}_{index}_{counter:05}_.png"
                img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=self.compress_level)
                res.append({
                    "filename": file,
                    "subfolder": subfolder,
                    "type": self.type
                })
                counter += 1
            results.append(res)
        
        return { "ui": { "_images": results,"prompts":prompts } }




class PromptSimplification:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "prompt": ("STRING", 
                         {
                            "multiline": True, 
                            "default": '',
                            "dynamicPrompts": False
                          }),

                "length":("INT", {"default": 5, "min": 1,"max":100, "step": 1, "display": "number"}),

                # "min_value":("FLOAT", {
                #         "default": -2, 
                #         "min": -10, 
                #         "max": 0xffffffffffffffff,
                #         "step": 0.01, 
                #         "display": "number"  
                #     }),
                # "max_value":("FLOAT", {
                #         "default": 2, 
                #         "min": -10, 
                #         "max": 0xffffffffffffffff,
                #         "step": 0.01, 
                #         "display": "number"  
                #     }),
              
                }
            }
    
    RETURN_TYPES = ("STRING",)
    RETURN_NAMES = ("prompts",)

    FUNCTION = "run"

    CATEGORY = "♾️Mixlab/Prompt"

    INPUT_IS_LIST = True
    OUTPUT_IS_LIST = (True,)
    OUTPUT_NODE = True

    # 运行的函数
    def run(self,prompt,length):
        length=length[0]
        result=[]
        for p in prompt:
            nps=prompt_delete_words(p,length)
            for n in nps:
                result.append(n)

        result= [elem.strip() for elem in result if elem.strip()]

        return {"ui": {"prompts": result}, "result": (result,)}



class PromptSlide:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                
                "prompt_keyword": ("STRING", 
                         {
                            "multiline": False, 
                            "default": '',
                            "dynamicPrompts": False
                          }),

                "weight":("FLOAT", {"default": 1, "min": -3,"max": 3,
                                                                "step": 0.01,
                                                                "display": "slider"}),

                # "min_value":("FLOAT", {
                #         "default": -2, 
                #         "min": -10, 
                #         "max": 0xffffffffffffffff,
                #         "step": 0.01, 
                #         "display": "number"  
                #     }),
                # "max_value":("FLOAT", {
                #         "default": 2, 
                #         "min": -10, 
                #         "max": 0xffffffffffffffff,
                #         "step": 0.01, 
                #         "display": "number"  
                #     }),
              
                }
            }
    
    RETURN_TYPES = ("STRING",)
    RETURN_NAMES = ("prompt",)

    FUNCTION = "run"

    CATEGORY = "♾️Mixlab/Prompt"

    INPUT_IS_LIST = False
    OUTPUT_IS_LIST = (False,)
    OUTPUT_NODE = False

    # 运行的函数
    def run(self,prompt_keyword,weight):
        # if weight < min_value:
        #     weight= min_value
        # elif weight > max_value:
        #     weight= max_value
        p=addWeight(prompt_keyword,weight)
        return (p,)




class RandomPrompt:

    '''
    @classmethod 是Python中的一个装饰器,用于将一个方法标记为类方法。
    类方法是与类相关联的方法,而不是与实例相关联的方法。
    这意味着类方法可以直接通过类进行调用,而不需要先创建一个类的实例。
    '''

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "max_count": ("INT", {"default": 9, "min": 1, "max": 1000}),
                # "image_field": ("IMAGE",),
                "mutable_prompt": ("STRING", 
                         {
                            "multiline": True, 
                            "default": default_prompt1
                          }),
                "immutable_prompt": ("STRING", 
                         {
                            "multiline": True, 
                            "default": 'sticker, Cartoon, ``'
                          }),
                "random_sample": (["enable", "disable"],),
                # "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "step": 1}),
                },
            "optional":{
                    "seed": (any_type,  {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                }
            }
    
    

    RETURN_TYPES = ("STRING",)

    FUNCTION = "run"

    CATEGORY = "♾️Mixlab/Prompt"

    OUTPUT_IS_LIST = (True,)
    OUTPUT_NODE = True


    # 运行的函数
    def run(self,max_count,mutable_prompt,immutable_prompt,random_sample,seed=0):
        # print('#运行的函数',mutable_prompt,immutable_prompt,max_count,random_sample)
        
        # Split the text into an array of words
        words1 = mutable_prompt.split("\n")

        # Split the text into an array of words
        words2 = immutable_prompt.split("\n")

        # 进度条
        pbar = comfy.utils.ProgressBar(len(words1)*len(words2))
        
        # Select a random word from the array
        # random_word = random.choice(words)

        prompts=[]
        for w1 in words1:
            w1=w1.strip()
            for w2 in words2:
                w2=w2.strip()
                if '``' not in w2:
                    if w2=="":
                        w2='``'
                    else:
                        w2=w2+',``'
                if w1!='' and w2!='':
                    prompts.append(w2.replace('``', w1))
                pbar.update(1)
        
        if len(prompts)==0:
            prompts.append(immutable_prompt)

        if random_sample=='enable':
            # 随机从数组中取max个元素
            prompts = random.sample(prompts, min(max_count,len(prompts)))
        else:
            prompts = prompts[:min(max_count,len(prompts))]

        prompts= [elem.strip() for elem in prompts if elem.strip()]

        # return (new_prompt)
        return {"ui": {"prompts": prompts}, "result": (prompts,)}


# class LoraPrompt:
#     @classmethod
#     def INPUT_TYPES(s):
#         return {
#             "required": {
#                 "lora_name":(sorted(folder_paths.get_filename_list("loras"), key=str.lower),),
#                 "weight": ("FLOAT", {"default": 1, "min": -2, "max": 2,"step":0.01 ,"display": "slider"}),
#                 "force_update": ("BOOLEAN", {"default": False}),
#                 },
                
#             }
    
#     RETURN_TYPES = ("STRING","STRING",any_type)
#     RETURN_NAMES = ("lora_name","prompt","tags",)

#     FUNCTION = "run"

#     CATEGORY = "♾️Mixlab/Prompt"

#     OUTPUT_IS_LIST = (False,False,True,)
#     # OUTPUT_NODE = True

#     # 运行的函数
#     def run(self,lora_name,weight,force_update=False):
       
#         # print('##LoraPrompt',__file__)
#         # 从本地数据库读取
#         json_tags_path = os.path.join(os.path.dirname(os.path.dirname(__file__)),r'data/loras_tags.json')

#         if not os.path.exists(json_tags_path):
#             save_json({},json_tags_path)

#         lora_tags = load_json(json_tags_path)
#         output_tags = lora_tags.get(lora_name, None) if lora_tags is not None else None
#         if output_tags is not None:
#             output_tags = ",".join(output_tags)
#             print("trainedWords:",output_tags)
#         else:
#             output_tags = ""


#         lora_path = folder_paths.get_full_path("loras", lora_name)
#         if output_tags == "" or force_update:
#             print("calculating lora hash")
#             LORAsha256 = calculate_sha256(lora_path)
#             print("requesting infos")
#             model_info = get_model_version_info(LORAsha256)
#             if model_info is not None:
#                 if "trainedWords" in model_info:
#                     print("tags found!")
#                     if lora_tags is None:
#                         lora_tags = {}
#                     lora_tags[lora_name] = model_info["trainedWords"]
#                     save_json(lora_tags,json_tags_path)
#                     output_tags = ",".join(model_info["trainedWords"])
#                     print("trainedWords:",output_tags)
#             else:
#                 print("No informations found.")
#                 if lora_tags is None:
#                     lora_tags = {}
#                 lora_tags[lora_name] = []
#                 save_json(lora_tags,json_tags_path)


#         weight = round(weight, 3)
#         prompt=[]
#         for p in output_tags.split(','):
            
#             if weight!=1:
#                 prompt.append('('+p+':'+str(weight)+')')
#             else:
#                 prompt.append(p)

#         prompt=",".join(prompt)

#         return (lora_name,prompt,output_tags.split(','),)



class EmbeddingPrompt:
    @classmethod
    def INPUT_TYPES(s):

        return {
            "required": {
                "embedding":(folder_paths.get_filename_list("embeddings"),),
                "weight": ("FLOAT", {"default": 1, "min": -2, "max": 2,"step":0.01 ,"display": "slider"}),
                },
                
            }
    
    RETURN_TYPES = ("STRING",)

    FUNCTION = "run"

    CATEGORY = "♾️Mixlab/Prompt"

    OUTPUT_IS_LIST = (False,)
    # OUTPUT_NODE = True

    # 运行的函数
    def run(self,embedding,weight):
        weight = round(weight, 3)
        prompt='embedding:'+embedding
        if weight!=1:
            prompt='('+prompt+':'+str(weight)+')'
        prompt=" "+prompt+' ' 
        # return (new_prompt)
        return (prompt,)

# RETURN_TYPES = (any_type,)
    
# conditioning :提示,正向or负向
# clip:clip模型
# gligen_textbox_model:gligen模型
# grids:矩形框的集合
# labels:每个矩形框对应的标签的集合
# index:选取第几个矩形框作为gligen的box

class GLIGENTextBoxApply_Advanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
                              "grids": ("_GRID",),
                              "labels": ("STRING", 
                                        {
                                            "multiline": True, 
                                            "default": "",
                                            "forceInput": True
                                        }),
                              "index": ("INT", {"default": -1, "min": -1, "max": 300, "step": 1}),
                              "max_size": ("INT", {"default": 8, "min": 1, "max": 300, "step": 1}),
                              "random_shuffle":(["on","off"],),
                             },
                 "optional":{
                    "seed": (any_type,  {"default": 0, "min": 0, "max": 0xffffffffffffffff,"step": 1}),
                } 
                            }
    RETURN_TYPES = ("CONDITIONING","STRING",)
    RETURN_NAMES = ("CONDITIONING","label",)

    FUNCTION = "run"
    # INPUT_IS_LIST = True
    CATEGORY = "♾️Mixlab/Prompt"

    def run(self, conditioning, clip, gligen_textbox_model, grids, labels, index,max_size,random_shuffle,seed=0):
        # print('grids',grids)
        # conditioning=conditioning[0]
        # clip=clip[0]
        # gligen_textbox_model=gligen_textbox_model[0]
        # index=index[0]
        # max_size=max_size[0]
        # random_shuffle=random_shuffle[0]

        texts=labels
        
        if index>-1:
            texts=[labels[index]]
            grids=[grids[index]]

        if random_shuffle=='on':
            sss=[[texts[i],grids[i]] for i in range(len(texts))]
            random.shuffle(sss)
            texts=[s[0] for s in sss]
            grids=[s[1] for s in sss]

        if len(texts) > max_size:
            texts = texts[:max_size]

        c = []
        
        for t in conditioning:
            n = [t[0], t[1].copy()]


            # 多个
            position_params=[]
            for i in range(len(texts)):
                text=texts[i]
                grid=grids[i]
                x,y,width,height=grid
                # print(text)
                cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
                position_params =position_params+ [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]

            # 前一个
            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]

            n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
            # print('gligen',n)
            c.append(n)
        
        #  下面这个写法有bug
        # for i in range(len(texts)):
        #     text=texts[i]
        #     grid=grids[i]
        #     x,y,width,height=grid

        #     cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
        #     for t in conditioning:
        #         n = [t[0], t[1].copy()]
        #         position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
        #         prev = []
        #         if "gligen" in n[1]:
        #             prev = n[1]['gligen'][2]

        #         n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
        #         c.append(n)


        return (c,texts, )
    

class JoinWithDelimiter:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                    "text_list": (any_type,),
                    "delimiter":(["newline","comma","backslash","space"],),
                             },
                }
    
    RETURN_TYPES = ("STRING",) 

    FUNCTION = "run"

    CATEGORY = "♾️Mixlab/Text"

    INPUT_IS_LIST = True # 当true的时候,输入时list,当false的时候,如果输入是list,则会自动包一层for循环调用
    OUTPUT_IS_LIST = (False,)

    def run(self,text_list,delimiter):
        delimiter=delimiter[0]
        if delimiter =='newline':
            delimiter='\n'
        elif delimiter=='comma':
            delimiter=','
        elif delimiter=='backslash':
            delimiter='\\'
        elif delimiter=='space':
            delimiter=' '
        t=''
        if isinstance(text_list, list):
            t=join_with_(text_list,delimiter)
        return (t,)