File size: 49,591 Bytes
1e3b872 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 |
import os
import torch
import numpy as np
import math
from torchvision import transforms
from torchvision.ops import masks_to_boxes
import torchvision.transforms.functional as TF
import torch.nn.functional as torchfn
import subprocess
import sys
DELIMITER = '|'
cached_clipseg_model = None
VERY_BIG_SIZE = 1024 * 1024
package_list = None
def update_package_list():
import sys
import subprocess
global package_list
package_list = [r.decode().split('==')[0] for r in subprocess.check_output([sys.executable, '-m', 'pip', 'freeze']).split()]
def ensure_package(package_name, import_path=None):
global package_list
if import_path == None:
import_path = package_name
if package_list == None:
update_package_list()
if package_name not in package_list:
print("(First Run) Installing missing package %s" % package_name)
subprocess.check_call([sys.executable, '-m', 'pip', '-q', 'install', import_path])
update_package_list()
def tensor2mask(t: torch.Tensor) -> torch.Tensor:
size = t.size()
if (len(size) < 4):
return t
if size[3] == 1:
return t[:,:,:,0]
elif size[3] == 4:
# Not sure what the right thing to do here is. Going to try to be a little smart and use alpha unless all alpha is 1 in case we'll fallback to RGB behavior
if torch.min(t[:, :, :, 3]).item() != 1.:
return t[:,:,:,3]
return TF.rgb_to_grayscale(tensor2rgb(t).permute(0,3,1,2), num_output_channels=1)[:,0,:,:]
def tensor2rgb(t: torch.Tensor) -> torch.Tensor:
size = t.size()
if (len(size) < 4):
return t.unsqueeze(3).repeat(1, 1, 1, 3)
if size[3] == 1:
return t.repeat(1, 1, 1, 3)
elif size[3] == 4:
return t[:, :, :, :3]
else:
return t
def tensor2rgba(t: torch.Tensor) -> torch.Tensor:
size = t.size()
if (len(size) < 4):
return t.unsqueeze(3).repeat(1, 1, 1, 4)
elif size[3] == 1:
return t.repeat(1, 1, 1, 4)
elif size[3] == 3:
alpha_tensor = torch.ones((size[0], size[1], size[2], 1))
return torch.cat((t, alpha_tensor), dim=3)
else:
return t
def tensor2batch(t: torch.Tensor, bs: torch.Size) -> torch.Tensor:
if len(t.size()) < len(bs):
t = t.unsqueeze(3)
if t.size()[0] < bs[0]:
t.repeat(bs[0], 1, 1, 1)
dim = bs[3]
if dim == 1:
return tensor2mask(t)
elif dim == 3:
return tensor2rgb(t)
elif dim == 4:
return tensor2rgba(t)
def tensors2common(t1: torch.Tensor, t2: torch.Tensor) -> (torch.Tensor, torch.Tensor):
t1s = t1.size()
t2s = t2.size()
if len(t1s) < len(t2s):
t1 = t1.unsqueeze(3)
elif len(t1s) > len(t2s):
t2 = t2.unsqueeze(3)
if len(t1.size()) == 3:
if t1s[0] < t2s[0]:
t1 = t1.repeat(t2s[0], 1, 1)
elif t1s[0] > t2s[0]:
t2 = t2.repeat(t1s[0], 1, 1)
else:
if t1s[0] < t2s[0]:
t1 = t1.repeat(t2s[0], 1, 1, 1)
elif t1s[0] > t2s[0]:
t2 = t2.repeat(t1s[0], 1, 1, 1)
t1s = t1.size()
t2s = t2.size()
if len(t1s) > 3 and t1s[3] < t2s[3]:
return tensor2batch(t1, t2s), t2
elif len(t1s) > 3 and t1s[3] > t2s[3]:
return t1, tensor2batch(t2, t1s)
else:
return t1, t2
class ClipSegNode:
"""
Automatically calculates a mask based on the text prompt
"""
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"prompt": ("STRING", {"multiline": True}),
"negative_prompt": ("STRING", {"multiline": True}),
"precision": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"normalize": (["no", "yes"],),
},
}
RETURN_TYPES = ("IMAGE","IMAGE",)
RETURN_NAMES = ("thresholded_mask", "raw_mask",)
FUNCTION = "get_mask"
CATEGORY = "Masquerade Nodes"
def get_mask(self, image, prompt, negative_prompt, precision, normalize):
model = self.load_model()
image = tensor2rgb(image)
B, H, W, _ = image.shape
# clipseg only works on square images, so we'll just use the larger dimension
# TODO - Should we pad instead of resize?
used_dim = max(W, H)
transform = transforms.Compose([
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
transforms.Resize((used_dim, used_dim), antialias=True) ])
img = transform(image.permute(0, 3, 1, 2))
prompts = prompt.split(DELIMITER)
negative_prompts = negative_prompt.split(DELIMITER) if negative_prompt != '' else []
with torch.no_grad():
# Optimize me: Could do positive and negative prompts as part of one batch
dup_prompts = [item for item in prompts for _ in range(B)]
preds = model(img.repeat(len(prompts), 1, 1, 1), dup_prompts)[0]
dup_neg_prompts = [item for item in negative_prompts for _ in range(B)]
negative_preds = model(img.repeat(len(negative_prompts), 1, 1, 1), dup_neg_prompts)[0] if len(negative_prompts) > 0 else None
preds = torch.nn.functional.interpolate(preds, size=(H, W), mode='nearest')
preds = torch.sigmoid(preds)
preds = preds.reshape(len(prompts), B, H, W)
mask = torch.max(preds, dim=0).values
if len(negative_prompts) > 0:
negative_preds = torch.nn.functional.interpolate(negative_preds, size=(H, W), mode='nearest')
negative_preds = torch.sigmoid(negative_preds)
negative_preds = negative_preds.reshape(len(negative_prompts), B, H, W)
mask_neg = torch.max(negative_preds, dim=0).values
mask = torch.min(mask, 1. - mask_neg)
if normalize == "yes":
mask_min = torch.min(mask)
mask_max = torch.max(mask)
mask_range = mask_max - mask_min
mask = (mask - mask_min) / mask_range
thresholded = torch.where(mask >= precision, 1., 0.)
# import code
# code.interact(local=locals())
return (thresholded.to(device=image.device), mask.to(device=image.device),)
def load_model(self):
global cached_clipseg_model
if cached_clipseg_model == None:
ensure_package("clipseg", "clipseg@git+https://github.com/timojl/clipseg.git@bbc86cfbb7e6a47fb6dae47ba01d3e1c2d6158b0")
from clipseg.clipseg import CLIPDensePredT
model = CLIPDensePredT(version='ViT-B/16', reduce_dim=64, complex_trans_conv=True)
model.eval()
d64_file = self.download_and_cache('rd64-uni-refined.pth', 'https://owncloud.gwdg.de/index.php/s/ioHbRzFx6th32hn/download?path=%2F&files=rd64-uni-refined.pth')
d16_file = self.download_and_cache('rd16-uni.pth', 'https://owncloud.gwdg.de/index.php/s/ioHbRzFx6th32hn/download?path=%2F&files=rd16-uni.pth')
# Use CUDA if it's available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.load_state_dict(torch.load(d64_file, map_location=device), strict=False)
model = model.eval().to(device=device)
cached_clipseg_model = model
return cached_clipseg_model
def download_and_cache(self, cache_name, url):
cache_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'download_cache')
os.makedirs(cache_dir, exist_ok=True)
file_name = os.path.join(cache_dir, cache_name)
if not os.path.exists(file_name):
print(f'Downloading and caching file: {cache_name}')
with open(file_name, 'wb') as file:
import requests
r = requests.get(url, stream=True)
r.raise_for_status()
for block in r.iter_content(4096):
file.write(block)
print('Finished downloading.')
return file_name
class MaskMorphologyNode:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"distance": ("INT", {"default": 5, "min": 0, "max": 128, "step": 1}),
"op": (["dilate", "erode", "open", "close"],),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "morph"
CATEGORY = "Masquerade Nodes"
def morph(self, image, distance, op):
image = tensor2mask(image)
if op == "dilate":
image = self.dilate(image, distance)
elif op == "erode":
image = self.erode(image, distance)
elif op == "open":
image = self.erode(image, distance)
image = self.dilate(image, distance)
elif op == "close":
image = self.dilate(image, distance)
image = self.erode(image, distance)
return (image,)
def erode(self, image, distance):
return 1. - self.dilate(1. - image, distance)
def dilate(self, image, distance):
kernel_size = 1 + distance * 2
# Add the channels dimension
image = image.unsqueeze(1)
out = torchfn.max_pool2d(image, kernel_size=kernel_size, stride=1, padding=kernel_size // 2).squeeze(1)
return out
class MaskCombineOp:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image1": ("IMAGE",),
"image2": ("IMAGE",),
"op": (["union (max)", "intersection (min)", "difference", "multiply", "multiply_alpha", "add", "greater_or_equal", "greater"],),
"clamp_result": (["yes", "no"],),
"round_result": (["no", "yes"],),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "combine"
CATEGORY = "Masquerade Nodes"
def combine(self, image1, image2, op, clamp_result, round_result):
image1, image2 = tensors2common(image1, image2)
if op == "union (max)":
result = torch.max(image1, image2)
elif op == "intersection (min)":
result = torch.min(image1, image2)
elif op == "difference":
result = image1 - image2
elif op == "multiply":
result = image1 * image2
elif op == "multiply_alpha":
image1 = tensor2rgba(image1)
image2 = tensor2mask(image2)
result = torch.cat((image1[:, :, :, :3], (image1[:, :, :, 3] * image2).unsqueeze(3)), dim=3)
elif op == "add":
result = image1 + image2
elif op == "greater_or_equal":
result = torch.where(image1 >= image2, 1., 0.)
elif op == "greater":
result = torch.where(image1 > image2, 1., 0.)
if clamp_result == "yes":
result = torch.min(torch.max(result, torch.tensor(0.)), torch.tensor(1.))
if round_result == "yes":
result = torch.round(result)
return (result,)
class UnaryMaskOp:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"op": (["invert", "average", "round", "clamp", "abs"],),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "op_mask"
CATEGORY = "Masquerade Nodes"
def op_mask(self, image, op):
image = tensor2mask(image)
if op == "invert":
return (1. - image,)
elif op == "average":
mean = torch.mean(torch.mean(image,dim=2),dim=1)
return (mean.unsqueeze(1).unsqueeze(2).repeat(1, image.shape[1], image.shape[2]),)
elif op == "round":
return (torch.round(image),)
elif op == "clamp":
return (torch.min(torch.max(image, torch.tensor(0.)), torch.tensor(1.)),)
elif op == "abs":
return (torch.abs(image),)
class UnaryImageOp:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"op": (["invert", "average", "round", "clamp", "abs"],),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "op_image"
CATEGORY = "Masquerade Nodes"
def op_image(self, image, op):
image = tensor2rgb(image)
if op == "invert":
return (1. - image,)
elif op == "average":
mean = torch.mean(torch.mean(image,dim=2),dim=1)
return (mean.unsqueeze(1).unsqueeze(2).repeat(1, image.shape[1], image.shape[2], 1),)
elif op == "round":
return (torch.round(image),)
elif op == "clamp":
return (torch.min(torch.max(image, torch.tensor(0.)), torch.tensor(1.)),)
elif op == "abs":
return (torch.abs(image),)
class BlurNode:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"radius": ("INT", {"default": 10, "min": 0, "max": 48, "step": 1}),
"sigma_factor": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 3., "step": 0.01}),
},
}
def gaussian_blur(self, image, kernel_size, sigma):
# I'll be honest, I'm not sure this calculation is actually correct for a Gaussian blur, but it looks close enough
kernel = torch.Tensor(kernel_size, kernel_size).to(device=image.device)
center = kernel_size // 2
variance = sigma**2
for i in range(kernel_size):
for j in range(kernel_size):
x = i - center
y = j - center
kernel[i, j] = math.exp(-(x**2 + y**2)/(2*variance))
kernel /= kernel.sum()
# Pad the input tensor
padding = (kernel_size - 1) // 2
input_pad = torch.nn.functional.pad(image, (padding, padding, padding, padding), mode='reflect')
# Reshape the padded input tensor for batched convolution
batch_size, num_channels, height, width = image.shape
input_reshaped = input_pad.reshape(batch_size*num_channels, 1, height+padding*2, width+padding*2)
# Perform batched convolution with the Gaussian kernel
output_reshaped = torch.nn.functional.conv2d(input_reshaped, kernel.unsqueeze(0).unsqueeze(0))
# Reshape the output tensor to its original shape
output_tensor = output_reshaped.reshape(batch_size, num_channels, height, width)
return output_tensor
RETURN_TYPES = ("IMAGE",)
FUNCTION = "blur"
CATEGORY = "Masquerade Nodes"
def blur(self, image, radius, sigma_factor):
if len(image.size()) == 3:
image = image.unsqueeze(3)
image = image.permute(0, 3, 1, 2)
kernel_size = radius * 2 + 1
sigma = sigma_factor * (0.6 * radius - 0.3)
result = self.gaussian_blur(image, kernel_size, sigma).permute(0, 2, 3, 1)
if result.size()[3] == 1:
result = result[:, :, :, 0]
return (result,)
class ImageToMask:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"method": (["intensity", "alpha"],),
},
}
RETURN_TYPES = ("MASK",)
FUNCTION = "convert"
CATEGORY = "Masquerade Nodes"
def convert(self, image, method):
if method == "intensity":
if len(image.shape) > 3 and image.shape[3] == 4:
image = tensor2rgb(image)
return (tensor2mask(image),)
else:
return (tensor2rgba(image)[:,:,:,0],)
class MixByMask:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image1": ("IMAGE",),
"image2": ("IMAGE",),
"mask": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "mix"
CATEGORY = "Masquerade Nodes"
def mix(self, image1, image2, mask):
image1, image2 = tensors2common(image1, image2)
mask = tensor2batch(mask, image1.size())
return (image1 * (1. - mask) + image2 * mask,)
class MixColorByMask:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"r": ("INT", {"default": 0, "min": 0, "max": 255, "step": 1}),
"g": ("INT", {"default": 0, "min": 0, "max": 255, "step": 1}),
"b": ("INT", {"default": 0, "min": 0, "max": 255, "step": 1}),
"mask": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "mix"
CATEGORY = "Masquerade Nodes"
def mix(self, image, r, g, b, mask):
r, g, b = r / 255., g / 255., b / 255.
image_size = image.size()
image2 = torch.tensor([r, g, b]).to(device=image.device).unsqueeze(0).unsqueeze(0).unsqueeze(0).repeat(image_size[0], image_size[1], image_size[2], 1)
image, image2 = tensors2common(image, image2)
mask = tensor2batch(tensor2mask(mask), image.size())
return (image * (1. - mask) + image2 * mask,)
class CreateRectMask:
"""
Creates a rectangle mask. If copy_image_size is provided, the image_width and image_height parameters are ignored and the size of the given images will be used instead.
"""
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mode": (["percent", "pixels"],),
"origin": (["topleft", "bottomleft", "topright", "bottomright"],),
"x": ("FLOAT", {"default": 0, "min": 0, "max": VERY_BIG_SIZE, "step": 1}),
"y": ("FLOAT", {"default": 0, "min": 0, "max": VERY_BIG_SIZE, "step": 1}),
"width": ("FLOAT", {"default": 50, "min": 0, "max": VERY_BIG_SIZE, "step": 1}),
"height": ("FLOAT", {"default": 50, "min": 0, "max": VERY_BIG_SIZE, "step": 1}),
"image_width": ("INT", {"default": 512, "min": 64, "max": VERY_BIG_SIZE, "step": 64}),
"image_height": ("INT", {"default": 512, "min": 64, "max": VERY_BIG_SIZE, "step": 64}),
},
"optional": {
"copy_image_size": ("IMAGE",),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "create_mask"
CATEGORY = "Masquerade Nodes"
def create_mask(self, mode, origin, x, y, width, height, image_width, image_height, copy_image_size = None):
min_x = x
min_y = y
max_x = min_x + width
max_y = min_y + height
if copy_image_size is not None:
size = copy_image_size.size()
image_width = size[2]
image_height = size[1]
if mode == "percent":
min_x = min_x / 100.0 * image_width
max_x = max_x / 100.0 * image_width
min_y = min_y / 100.0 * image_height
max_y = max_y / 100.0 * image_height
if origin == "bottomleft" or origin == "bottomright":
min_y, max_y = image_height - max_y, image_height - min_y
if origin == "topright" or origin == "bottomright":
min_x, max_x = image_width - max_x, image_width - min_x
mask = torch.zeros((image_height, image_width))
mask[int(min_y):int(max_y)+1, int(min_x):int(max_x)+1] = 1
return (mask.unsqueeze(0),)
class MaskToRegion:
"""
Given a mask, returns a rectangular region that fits the mask with the given constraints
"""
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mask": ("IMAGE",),
"padding": ("INT", {"default": 0, "min": 0, "max": VERY_BIG_SIZE, "step": 1}),
"constraints": (["keep_ratio", "keep_ratio_divisible", "multiple_of", "ignore"],),
"constraint_x": ("INT", {"default": 64, "min": 2, "max": VERY_BIG_SIZE, "step": 1}),
"constraint_y": ("INT", {"default": 64, "min": 2, "max": VERY_BIG_SIZE, "step": 1}),
"min_width": ("INT", {"default": 0, "min": 0, "max": VERY_BIG_SIZE, "step": 1}),
"min_height": ("INT", {"default": 0, "min": 0, "max": VERY_BIG_SIZE, "step": 1}),
"batch_behavior": (["match_ratio", "match_size"],),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "get_region"
CATEGORY = "Masquerade Nodes"
def get_region(self, mask, padding, constraints, constraint_x, constraint_y, min_width, min_height, batch_behavior):
mask = tensor2mask(mask)
mask_size = mask.size()
mask_width = int(mask_size[2])
mask_height = int(mask_size[1])
# masks_to_boxes errors if the tensor is all zeros, so we'll add a single pixel and zero it out at the end
is_empty = ~torch.gt(torch.max(torch.reshape(mask,[mask_size[0], mask_width * mask_height]), dim=1).values, 0.)
mask[is_empty,0,0] = 1.
boxes = masks_to_boxes(mask)
mask[is_empty,0,0] = 0.
# Account for padding
min_x = torch.max(boxes[:,0] - padding, torch.tensor(0.))
min_y = torch.max(boxes[:,1] - padding, torch.tensor(0.))
max_x = torch.min(boxes[:,2] + padding, torch.tensor(mask_width))
max_y = torch.min(boxes[:,3] + padding, torch.tensor(mask_height))
width = max_x - min_x
height = max_y - min_y
# Make sure the width and height are big enough
target_width = torch.max(width, torch.tensor(min_width))
target_height = torch.max(height, torch.tensor(min_height))
if constraints == "keep_ratio":
target_width = torch.max(target_width, target_height * constraint_x // constraint_y)
target_height = torch.max(target_height, target_width * constraint_y // constraint_x)
elif constraints == "keep_ratio_divisible":
# Probably a more efficient way to do this, but given the bounds it's not too bad
max_factors = torch.min(constraint_x // target_width, constraint_y // target_height)
max_factor = int(torch.max(max_factors).item())
for i in range(1, max_factor+1):
divisible = constraint_x % i == 0 and constraint_y % i == 0
if divisible:
big_enough = ~torch.lt(target_width, constraint_x // i) * ~torch.lt(target_height, constraint_y // i)
target_width[big_enough] = constraint_x // i
target_height[big_enough] = constraint_y // i
elif constraints == "multiple_of":
target_width[torch.gt(target_width % constraint_x, 0)] = (target_width // constraint_x + 1) * constraint_x
target_height[torch.gt(target_height % constraint_y, 0)] = (target_height // constraint_y + 1) * constraint_y
if batch_behavior == "match_size":
target_width[:] = torch.max(target_width)
target_height[:] = torch.max(target_height)
elif batch_behavior == "match_ratio":
# We'll target the ratio that's closest to 1:1, but don't want to take into account empty masks
ratios = torch.abs(target_width / target_height - 1)
ratios[is_empty] = 10000
match_ratio = torch.min(ratios,dim=0).indices.item()
target_width = torch.max(target_width, target_height * target_width[match_ratio] // target_height[match_ratio])
target_height = torch.max(target_height, target_width * target_height[match_ratio] // target_width[match_ratio])
missing = target_width - width
min_x = min_x - missing // 2
max_x = max_x + (missing - missing // 2)
missing = target_height - height
min_y = min_y - missing // 2
max_y = max_y + (missing - missing // 2)
# Move the region into range if needed
bad = torch.lt(min_x,0)
max_x[bad] -= min_x[bad]
min_x[bad] = 0
bad = torch.lt(min_y,0)
max_y[bad] -= min_y[bad]
min_y[bad] = 0
bad = torch.gt(max_x, mask_width)
min_x[bad] -= (max_x[bad] - mask_width)
max_x[bad] = mask_width
bad = torch.gt(max_y, mask_height)
min_y[bad] -= (max_y[bad] - mask_height)
max_y[bad] = mask_height
region = torch.zeros((mask_size[0], mask_height, mask_width))
for i in range(0, mask_size[0]):
if not is_empty[i]:
ymin = int(min_y[i].item())
ymax = int(max_y[i].item())
xmin = int(min_x[i].item())
xmax = int(max_x[i].item())
region[i, ymin:ymax+1, xmin:xmax+1] = 1
return (region,)
class CutByMask:
"""
Cuts the image to the bounding box of the mask. If force_resize_width or force_resize_height are provided, the image will be resized to those dimensions. The `mask_mapping_optional` input can be provided from a 'Separate Mask Components' node to cut multiple pieces out of a single image in a batch.
"""
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"mask": ("IMAGE",),
"force_resize_width": ("INT", {"default": 0, "min": 0, "max": VERY_BIG_SIZE, "step": 1}),
"force_resize_height": ("INT", {"default": 0, "min": 0, "max": VERY_BIG_SIZE, "step": 1}),
},
"optional": {
"mask_mapping_optional": ("MASK_MAPPING",),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "cut"
CATEGORY = "Masquerade Nodes"
def cut(self, image, mask, force_resize_width, force_resize_height, mask_mapping_optional = None):
if len(image.shape) < 4:
C = 1
else:
C = image.shape[3]
# We operate on RGBA to keep the code clean and then convert back after
image = tensor2rgba(image)
mask = tensor2mask(mask)
if mask_mapping_optional is not None:
image = image[mask_mapping_optional]
# Scale the mask to be a matching size if it isn't
B, H, W, _ = image.shape
mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(H, W), mode='nearest')[:,0,:,:]
MB, _, _ = mask.shape
if MB < B:
assert(B % MB == 0)
mask = mask.repeat(B // MB, 1, 1)
# masks_to_boxes errors if the tensor is all zeros, so we'll add a single pixel and zero it out at the end
is_empty = ~torch.gt(torch.max(torch.reshape(mask,[MB, H * W]), dim=1).values, 0.)
mask[is_empty,0,0] = 1.
boxes = masks_to_boxes(mask)
mask[is_empty,0,0] = 0.
min_x = boxes[:,0]
min_y = boxes[:,1]
max_x = boxes[:,2]
max_y = boxes[:,3]
width = max_x - min_x + 1
height = max_y - min_y + 1
use_width = int(torch.max(width).item())
use_height = int(torch.max(height).item())
if force_resize_width > 0:
use_width = force_resize_width
if force_resize_height > 0:
use_height = force_resize_height
alpha_mask = torch.ones((B, H, W, 4))
alpha_mask[:,:,:,3] = mask
image = image * alpha_mask
result = torch.zeros((B, use_height, use_width, 4))
for i in range(0, B):
if not is_empty[i]:
ymin = int(min_y[i].item())
ymax = int(max_y[i].item())
xmin = int(min_x[i].item())
xmax = int(max_x[i].item())
single = (image[i, ymin:ymax+1, xmin:xmax+1,:]).unsqueeze(0)
resized = torch.nn.functional.interpolate(single.permute(0, 3, 1, 2), size=(use_height, use_width), mode='bicubic').permute(0, 2, 3, 1)
result[i] = resized[0]
# Preserve our type unless we were previously RGB and added non-opaque alpha due to the mask size
if C == 1:
return (tensor2mask(result),)
elif C == 3 and torch.min(result[:,:,:,3]) == 1:
return (tensor2rgb(result),)
else:
return (result,)
class SeparateMaskComponents:
"""
Separates a mask into multiple contiguous components. Returns the individual masks created as well as a MASK_MAPPING which can be used in other nodes when dealing with batches.
"""
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mask": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE","MASK_MAPPING")
RETURN_NAMES = ("mask", "mask_mappings")
FUNCTION = "separate"
CATEGORY = "Masquerade Nodes"
def separate(self, mask):
mask = tensor2mask(mask)
thresholded = torch.gt(mask,0).unsqueeze(1)
B, H, W = mask.shape
components = torch.arange(B * H * W, device=mask.device, dtype=mask.dtype).reshape(B, 1, H, W) + 1
components[~thresholded] = 0
while True:
previous_components = components
components = torch.nn.functional.max_pool2d(components, kernel_size=3, stride=1, padding=1)
components[~thresholded] = 0
if torch.equal(previous_components, components):
break
components = components.reshape(B, H, W)
segments = torch.unique(components)
result = torch.zeros([len(segments) - 1, H, W])
index = 0
mapping = torch.zeros([len(segments) - 1], device=mask.device, dtype=torch.int)
for i in range(len(segments)):
segment = segments[i].item()
if segment == 0:
continue
image_index = int((segment - 1) // (H * W))
segment_mask = (components[image_index,:,:] == segment)
result[index][segment_mask] = mask[image_index][segment_mask]
mapping[index] = image_index
index += 1
return (result,mapping,)
class PasteByMask:
"""
Pastes `image_to_paste` onto `image_base` using `mask` to determine the location. The `resize_behavior` parameter determines how the image to paste is resized to fit the mask. If `mask_mapping_optional` obtained from a 'Separate Mask Components' node is used, it will control which image gets pasted onto which base image.
"""
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image_base": ("IMAGE",),
"image_to_paste": ("IMAGE",),
"mask": ("IMAGE",),
"resize_behavior": (["resize", "keep_ratio_fill", "keep_ratio_fit", "source_size", "source_size_unmasked"],)
},
"optional": {
"mask_mapping_optional": ("MASK_MAPPING",),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "paste"
CATEGORY = "Masquerade Nodes"
def paste(self, image_base, image_to_paste, mask, resize_behavior, mask_mapping_optional = None):
image_base = tensor2rgba(image_base)
image_to_paste = tensor2rgba(image_to_paste)
mask = tensor2mask(mask)
# Scale the mask to be a matching size if it isn't
B, H, W, C = image_base.shape
MB = mask.shape[0]
PB = image_to_paste.shape[0]
if mask_mapping_optional is None:
if B < PB:
assert(PB % B == 0)
image_base = image_base.repeat(PB // B, 1, 1, 1)
B, H, W, C = image_base.shape
if MB < B:
assert(B % MB == 0)
mask = mask.repeat(B // MB, 1, 1)
elif B < MB:
assert(MB % B == 0)
image_base = image_base.repeat(MB // B, 1, 1, 1)
if PB < B:
assert(B % PB == 0)
image_to_paste = image_to_paste.repeat(B // PB, 1, 1, 1)
mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(H, W), mode='nearest')[:,0,:,:]
MB, MH, MW = mask.shape
# masks_to_boxes errors if the tensor is all zeros, so we'll add a single pixel and zero it out at the end
is_empty = ~torch.gt(torch.max(torch.reshape(mask,[MB, MH * MW]), dim=1).values, 0.)
mask[is_empty,0,0] = 1.
boxes = masks_to_boxes(mask)
mask[is_empty,0,0] = 0.
min_x = boxes[:,0]
min_y = boxes[:,1]
max_x = boxes[:,2]
max_y = boxes[:,3]
mid_x = (min_x + max_x) / 2
mid_y = (min_y + max_y) / 2
target_width = max_x - min_x + 1
target_height = max_y - min_y + 1
result = image_base.detach().clone()
for i in range(0, MB):
if is_empty[i]:
continue
else:
image_index = i
if mask_mapping_optional is not None:
image_index = mask_mapping_optional[i].item()
source_size = image_to_paste.size()
SB, SH, SW, _ = image_to_paste.shape
# Figure out the desired size
width = int(target_width[i].item())
height = int(target_height[i].item())
if resize_behavior == "keep_ratio_fill":
target_ratio = width / height
actual_ratio = SW / SH
if actual_ratio > target_ratio:
width = int(height * actual_ratio)
elif actual_ratio < target_ratio:
height = int(width / actual_ratio)
elif resize_behavior == "keep_ratio_fit":
target_ratio = width / height
actual_ratio = SW / SH
if actual_ratio > target_ratio:
height = int(width / actual_ratio)
elif actual_ratio < target_ratio:
width = int(height * actual_ratio)
elif resize_behavior == "source_size" or resize_behavior == "source_size_unmasked":
width = SW
height = SH
# Resize the image we're pasting if needed
resized_image = image_to_paste[i].unsqueeze(0)
if SH != height or SW != width:
resized_image = torch.nn.functional.interpolate(resized_image.permute(0, 3, 1, 2), size=(height,width), mode='bicubic').permute(0, 2, 3, 1)
pasting = torch.ones([H, W, C])
ymid = float(mid_y[i].item())
ymin = int(math.floor(ymid - height / 2)) + 1
ymax = int(math.floor(ymid + height / 2)) + 1
xmid = float(mid_x[i].item())
xmin = int(math.floor(xmid - width / 2)) + 1
xmax = int(math.floor(xmid + width / 2)) + 1
_, source_ymax, source_xmax, _ = resized_image.shape
source_ymin, source_xmin = 0, 0
if xmin < 0:
source_xmin = abs(xmin)
xmin = 0
if ymin < 0:
source_ymin = abs(ymin)
ymin = 0
if xmax > W:
source_xmax -= (xmax - W)
xmax = W
if ymax > H:
source_ymax -= (ymax - H)
ymax = H
pasting[ymin:ymax, xmin:xmax, :] = resized_image[0, source_ymin:source_ymax, source_xmin:source_xmax, :]
pasting[:, :, 3] = 1.
pasting_alpha = torch.zeros([H, W])
pasting_alpha[ymin:ymax, xmin:xmax] = resized_image[0, source_ymin:source_ymax, source_xmin:source_xmax, 3]
if resize_behavior == "keep_ratio_fill" or resize_behavior == "source_size_unmasked":
# If we explicitly want to fill the area, we are ok with extending outside
paste_mask = pasting_alpha.unsqueeze(2).repeat(1, 1, 4)
else:
paste_mask = torch.min(pasting_alpha, mask[i]).unsqueeze(2).repeat(1, 1, 4)
result[image_index] = pasting * paste_mask + result[image_index] * (1. - paste_mask)
return (result,)
class GetImageSize:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
},
}
RETURN_TYPES = ("INT","INT",)
RETURN_NAMES = ("width", "height")
FUNCTION = "get_size"
CATEGORY = "Masquerade Nodes"
def get_size(self, image):
image_size = image.size()
image_width = int(image_size[2])
image_height = int(image_size[1])
return (image_width, image_height,)
class ChangeChannelCount:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"kind": (["mask", "RGB", "RGBA"],),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "change_channels"
CATEGORY = "Masquerade Nodes"
def change_channels(self, image, kind):
image_size = image.size()
if kind == "mask":
return (tensor2mask(image),)
elif kind == "RGBA":
return (tensor2rgba(image),)
else: # RGB
return (tensor2rgb(image),)
class ConstantMask:
"""
Creates a mask filled with a constant value. If copy_image_size is provided, the explicit_height and explicit_width parameters are ignored and the size of the given images will be used instead.
"""
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"value": ("FLOAT", {"default": 0.0, "min": -8.0, "max": 8.0, "step": 0.01}),
"explicit_height": ("INT", {"default": 0, "min": 0, "max": VERY_BIG_SIZE, "step": 1}),
"explicit_width": ("INT", {"default": 0, "min": 0, "max": VERY_BIG_SIZE, "step": 1}),
},
"optional": {
"copy_image_size": ("IMAGE",),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "constant_mask"
CATEGORY = "Masquerade Nodes"
def constant_mask(self, value, explicit_height, explicit_width, copy_image_size = None):
height = explicit_height
width = explicit_width
if copy_image_size is not None:
size = copy_image_size.size()
height = size[1]
width = size[2]
elif explicit_height == 0 or explicit_width == 0:
# We'll just make a tiny mask and let it get resized by nodes further downstream
height = 16
width = 16
result = torch.zeros([1, height, width])
result[:,:,:] = value
return (result,)
class PruneByMask:
"""
Filters out the images in a batch that don't have an associated mask with an average pixel value of at least 0.5.
"""
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"mask": ("IMAGE",),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "prune"
CATEGORY = "Masquerade Nodes"
def prune(self, image, mask):
mask = tensor2mask(mask)
mean = torch.mean(torch.mean(mask,dim=2),dim=1)
return (image[mean >= 0.5],)
class MakeImageBatch:
"""
Creates a batch of images from multiple individual images or batches.
"""
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image1": ("IMAGE",),
},
"optional": {
"image2": ("IMAGE",),
"image3": ("IMAGE",),
"image4": ("IMAGE",),
"image5": ("IMAGE",),
"image6": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "append"
CATEGORY = "Masquerade Nodes"
def append(self, image1, image2 = None, image3 = None, image4 = None, image5 = None, image6 = None):
result = image1
if image2 is not None:
result = torch.cat((result, image2), 0)
if image3 is not None:
result = torch.cat((result, image3), 0)
if image4 is not None:
result = torch.cat((result, image4), 0)
if image5 is not None:
result = torch.cat((result, image5), 0)
if image6 is not None:
result = torch.cat((result, image6), 0)
return (result,)
class CreateQRCodeNode:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"text": ("STRING", {"multiline": True}),
"size": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
"qr_version": ("INT", {"default": 1, "min": 1, "max": 40, "step": 1}),
"error_correction": (["L", "M", "Q", "H"], {"default": "H"}),
"box_size": ("INT", {"default": 10, "min": 1, "max": 100, "step": 1}),
"border": ("INT", {"default": 4, "min": 0, "max": 100, "step": 1}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "create_qr_code"
CATEGORY = "Masquerade Nodes"
def create_qr_code(self, text, size, qr_version, error_correction, box_size, border):
ensure_package("qrcode")
import qrcode
if error_correction =="L":
error_level = qrcode.constants.ERROR_CORRECT_L
elif error_correction =="M":
error_level = qrcode.constants.ERROR_CORRECT_M
elif error_correction =="Q":
error_level = qrcode.constants.ERROR_CORRECT_Q
else:
error_level = qrcode.constants.ERROR_CORRECT_H
qr = qrcode.QRCode(
version=qr_version,
error_correction=error_level,
box_size=box_size,
border=border)
qr.add_data(text)
qr.make(fit=True)
img = qr.make_image(fill_color="black", back_color="white")
img = img.resize((size,size))
# Convert img (a PIL Image) into a torch tensor
tensor = torch.from_numpy(np.array(img))
return (tensor2rgb(tensor.unsqueeze(0)),)
def rgb2hsv(rgb):
# rgb is a tensor in the form [B, H, W, C]
r = rgb[...,0]
g = rgb[...,1]
b = rgb[...,2]
hsv = torch.zeros_like(rgb)
hsv_h = hsv[...,0]
hsv_s = hsv[...,1]
hsv_v = hsv[...,2]
# Value
hsv_v[:], max_idx = torch.max(rgb, dim=3)
chroma = hsv_v - torch.min(rgb, dim=3).values
# Hue
sixth = 1.0 / 6.0
hsv_h[max_idx == 0] = (sixth * ((g - b) / chroma % 6))[max_idx == 0]
hsv_h[max_idx == 1] = (sixth * ((b - r) / chroma + 2))[max_idx == 1]
hsv_h[max_idx == 2] = (sixth * ((r - g) / chroma + 4))[max_idx == 2]
hsv_h[chroma == 0] = 0
# Saturation
hsv_s[chroma != 0] = chroma[chroma != 0] / hsv_v[chroma != 0]
return hsv
def hsv2rgb(hsv):
# hsv is a tensor in the form [B, H, W, C] where C is (h,s,v)
h = hsv[...,0]
h = h % 1.0
s = hsv[...,1]
v = hsv[...,2]
rgb = torch.zeros_like(hsv)
chroma = v * s
hp = (h * 6.0).type(torch.uint8)
x = chroma * (1 - torch.abs((h * 6.0) % 2 - 1))
zeros = torch.zeros_like(x)
rgb[hp == 0] = torch.stack([chroma, x, zeros], dim=3)[hp == 0]
rgb[hp == 1] = torch.stack([x, chroma, zeros], dim=3)[hp == 1]
rgb[hp == 2] = torch.stack([zeros, chroma, x], dim=3)[hp == 2]
rgb[hp == 3] = torch.stack([zeros, x, chroma], dim=3)[hp == 3]
rgb[hp == 4] = torch.stack([x, zeros, chroma], dim=3)[hp == 4]
rgb[hp == 5] = torch.stack([chroma, zeros, x], dim=3)[hp == 5]
rgb += (v - chroma).unsqueeze(3).repeat(1,1,1,3)
return rgb
def hsv2hsl(hsv):
hsl = torch.zeros_like(hsv)
h = hsv[...,0]
s = hsv[...,1]
v = hsv[...,2]
hsl[...,0] = h
hsl[...,2] = v * (1. - s / 2.)
l = hsl[...,2]
defined = (l != 0) & (l != 1)
hsl[...,1][defined] = ((v - l) / torch.min(l, 1. - l))[defined]
return hsl
def hsl2hsv(hsl):
hsv = torch.zeros_like(hsl)
h = hsl[...,0]
s = hsl[...,1]
l = hsl[...,2]
hsv[...,0] = h
hsv[...,2] = l + s * torch.min(l, 1. - l)
v = hsv[...,2]
defined = (v != 0)
hsv[...,1][defined] = (2. * (1. - l / v))[defined]
return hsv
class ConvertColorSpace:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"in_space": (["RGB", "HSV", "HSL"],),
"out_space": (["RGB", "HSV", "HSL"],),
"image": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "convert_color_space"
CATEGORY = "Masquerade Nodes"
def convert_color_space(self, in_space, out_space, image):
if in_space == out_space:
return (image,)
image = tensor2rgb(image)
if in_space == "HSV":
hsv = image
if in_space == "RGB":
hsv = rgb2hsv(image)
elif in_space == "HSL":
hsv = hsl2hsv(image)
# We are now in RGB or HSV
if out_space == "HSV":
return (hsv,)
elif out_space == "RGB":
return (hsv2rgb(hsv),)
else:
assert out_space == "HSL"
return (hsv2hsl(hsv),)
class MaqueradeIncrementerNode:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"seed": ("INT", {"default": 0, "min": -1, "max": 0xffffffffffffffff, "step": 1}),
"max_value": ("INT", {"default": 1, "min": 1, "max": 0xffffffffffffffff, "step": 1}),
}
}
RETURN_TYPES = ("INT",)
FUNCTION = "increment"
CATEGORY = "Masquerade Nodes"
def increment(self, seed, max_value):
return (seed % max_value,)
NODE_CLASS_MAPPINGS = {
"Mask By Text": ClipSegNode,
"Mask Morphology": MaskMorphologyNode,
"Combine Masks": MaskCombineOp,
"Unary Mask Op": UnaryMaskOp,
"Unary Image Op": UnaryImageOp,
"Blur": BlurNode,
"Image To Mask": ImageToMask,
"Mix Images By Mask": MixByMask,
"Mix Color By Mask": MixColorByMask,
"Mask To Region": MaskToRegion,
"Cut By Mask": CutByMask,
"Paste By Mask": PasteByMask,
"Get Image Size": GetImageSize,
"Change Channel Count": ChangeChannelCount,
"Constant Mask": ConstantMask,
"Prune By Mask": PruneByMask,
"Separate Mask Components": SeparateMaskComponents,
"Create Rect Mask": CreateRectMask,
"Make Image Batch": MakeImageBatch,
"Create QR Code": CreateQRCodeNode,
"Convert Color Space": ConvertColorSpace,
"MasqueradeIncrementer": MaqueradeIncrementerNode,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"Mask By Text": "Mask By Text",
"Mask Morphology": "Mask Morphology",
"Combine Masks": "Combine Masks",
"Unary Mask Op": "Unary Mask Op",
"Unary Image Op": "Unary Image Op",
"Blur": "Blur",
"Image To Mask": "Image To Mask",
"Mix Images By Mask": "Mix Images By Mask",
"Mix Color By Mask": "Mix Color By Mask",
"Mask To Region": "Mask To Region",
"Cut By Mask": "Cut By Mask",
"Paste By Mask": "Paste By Mask",
"Get Image Size": "Get Image Size",
"Change Channel Count": "Change Channel Count",
"Constant Mask": "Constant Mask",
"Prune By Mask": "Prune By Mask",
"Separate Mask Components": "Separate Mask Components",
"Create Rect Mask": "Create Rect Mask",
"Make Image Batch": "Make Image Batch",
"Create QR Code": "Create QR Code",
"Convert Color Space": "Convert Color Space",
"MasqueradeIncrementer": "Incrementer",
}
|