File size: 20,778 Bytes
1e3b872 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 |
import os
import threading
import traceback
from aiohttp import web
import impact
import folder_paths
import torchvision
import impact.core as core
import impact.impact_pack as impact_pack
from impact.utils import to_tensor
from segment_anything import SamPredictor, sam_model_registry
import numpy as np
import nodes
from PIL import Image
import io
import impact.wildcards as wildcards
import comfy
from io import BytesIO
import random
from server import PromptServer
@PromptServer.instance.routes.post("/upload/temp")
async def upload_image(request):
upload_dir = folder_paths.get_temp_directory()
if not os.path.exists(upload_dir):
os.makedirs(upload_dir)
post = await request.post()
image = post.get("image")
if image and image.file:
filename = image.filename
if not filename:
return web.Response(status=400)
split = os.path.splitext(filename)
i = 1
while os.path.exists(os.path.join(upload_dir, filename)):
filename = f"{split[0]} ({i}){split[1]}"
i += 1
filepath = os.path.join(upload_dir, filename)
with open(filepath, "wb") as f:
f.write(image.file.read())
return web.json_response({"name": filename})
else:
return web.Response(status=400)
sam_predictor = None
default_sam_model_name = os.path.join(impact_pack.model_path, "sams", "sam_vit_b_01ec64.pth")
sam_lock = threading.Condition()
last_prepare_data = None
def async_prepare_sam(image_dir, model_name, filename):
with sam_lock:
global sam_predictor
if 'vit_h' in model_name:
model_kind = 'vit_h'
elif 'vit_l' in model_name:
model_kind = 'vit_l'
else:
model_kind = 'vit_b'
sam_model = sam_model_registry[model_kind](checkpoint=model_name)
sam_predictor = SamPredictor(sam_model)
image_path = os.path.join(image_dir, filename)
image = nodes.LoadImage().load_image(image_path)[0]
image = np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)
if impact.config.get_config()['sam_editor_cpu']:
device = 'cpu'
else:
device = comfy.model_management.get_torch_device()
sam_predictor.model.to(device=device)
sam_predictor.set_image(image, "RGB")
sam_predictor.model.cpu()
@PromptServer.instance.routes.post("/sam/prepare")
async def sam_prepare(request):
global sam_predictor
global last_prepare_data
data = await request.json()
with sam_lock:
if last_prepare_data is not None and last_prepare_data == data:
# already loaded: skip -- prevent redundant loading
return web.Response(status=200)
last_prepare_data = data
model_name = 'sam_vit_b_01ec64.pth'
if data['sam_model_name'] == 'auto':
model_name = impact.config.get_config()['sam_editor_model']
model_name = os.path.join(impact_pack.model_path, "sams", model_name)
print(f"[INFO] ComfyUI-Impact-Pack: Loading SAM model '{impact_pack.model_path}'")
filename, image_dir = folder_paths.annotated_filepath(data["filename"])
if image_dir is None:
typ = data['type'] if data['type'] != '' else 'output'
image_dir = folder_paths.get_directory_by_type(typ)
if data['subfolder'] is not None and data['subfolder'] != '':
image_dir += f"/{data['subfolder']}"
if image_dir is None:
return web.Response(status=400)
thread = threading.Thread(target=async_prepare_sam, args=(image_dir, model_name, filename,))
thread.start()
print(f"[INFO] ComfyUI-Impact-Pack: SAM model loaded. ")
return web.Response(status=200)
@PromptServer.instance.routes.post("/sam/release")
async def release_sam(request):
global sam_predictor
with sam_lock:
del sam_predictor
sam_predictor = None
print(f"[INFO] ComfyUI-Impact-Pack: unloading SAM model")
@PromptServer.instance.routes.post("/sam/detect")
async def sam_detect(request):
global sam_predictor
with sam_lock:
if sam_predictor is not None:
if impact.config.get_config()['sam_editor_cpu']:
device = 'cpu'
else:
device = comfy.model_management.get_torch_device()
sam_predictor.model.to(device=device)
try:
data = await request.json()
positive_points = data['positive_points']
negative_points = data['negative_points']
threshold = data['threshold']
points = []
plabs = []
for p in positive_points:
points.append(p)
plabs.append(1)
for p in negative_points:
points.append(p)
plabs.append(0)
detected_masks = core.sam_predict(sam_predictor, points, plabs, None, threshold)
mask = core.combine_masks2(detected_masks)
if mask is None:
return web.Response(status=400)
image = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3)
i = 255. * image.cpu().numpy()
img = Image.fromarray(np.clip(i[0], 0, 255).astype(np.uint8))
img_buffer = io.BytesIO()
img.save(img_buffer, format='png')
headers = {'Content-Type': 'image/png'}
finally:
sam_predictor.model.to(device="cpu")
return web.Response(body=img_buffer.getvalue(), headers=headers)
else:
return web.Response(status=400)
@PromptServer.instance.routes.get("/impact/wildcards/refresh")
async def wildcards_refresh(request):
impact.wildcards.wildcard_load()
return web.Response(status=200)
@PromptServer.instance.routes.get("/impact/wildcards/list")
async def wildcards_list(request):
data = {'data': impact.wildcards.get_wildcard_list()}
return web.json_response(data)
@PromptServer.instance.routes.post("/impact/wildcards")
async def populate_wildcards(request):
data = await request.json()
populated = wildcards.process(data['text'], data.get('seed', None))
return web.json_response({"text": populated})
segs_picker_map = {}
@PromptServer.instance.routes.get("/impact/segs/picker/count")
async def segs_picker_count(request):
node_id = request.rel_url.query.get('id', '')
if node_id in segs_picker_map:
res = len(segs_picker_map[node_id])
return web.Response(status=200, text=str(res))
return web.Response(status=400)
@PromptServer.instance.routes.get("/impact/segs/picker/view")
async def segs_picker(request):
node_id = request.rel_url.query.get('id', '')
idx = int(request.rel_url.query.get('idx', ''))
if node_id in segs_picker_map and idx < len(segs_picker_map[node_id]):
img = to_tensor(segs_picker_map[node_id][idx]).permute(0, 3, 1, 2).squeeze(0)
pil = torchvision.transforms.ToPILImage('RGB')(img)
image_bytes = BytesIO()
pil.save(image_bytes, format="PNG")
image_bytes.seek(0)
return web.Response(status=200, body=image_bytes, content_type='image/png', headers={"Content-Disposition": f"filename={node_id}{idx}.png"})
return web.Response(status=400)
@PromptServer.instance.routes.get("/view/validate")
async def view_validate(request):
if "filename" in request.rel_url.query:
filename = request.rel_url.query["filename"]
subfolder = request.rel_url.query["subfolder"]
filename, base_dir = folder_paths.annotated_filepath(filename)
if filename == '' or filename[0] == '/' or '..' in filename:
return web.Response(status=400)
if base_dir is None:
base_dir = folder_paths.get_input_directory()
file = os.path.join(base_dir, subfolder, filename)
if os.path.isfile(file):
return web.Response(status=200)
return web.Response(status=400)
@PromptServer.instance.routes.get("/impact/validate/pb_id_image")
async def view_validate(request):
if "id" in request.rel_url.query:
pb_id = request.rel_url.query["id"]
if pb_id not in core.preview_bridge_image_id_map:
return web.Response(status=400)
file = core.preview_bridge_image_id_map[pb_id]
if os.path.isfile(file):
return web.Response(status=200)
return web.Response(status=400)
@PromptServer.instance.routes.get("/impact/set/pb_id_image")
async def set_previewbridge_image(request):
try:
if "filename" in request.rel_url.query:
node_id = request.rel_url.query["node_id"]
filename = request.rel_url.query["filename"]
path_type = request.rel_url.query["type"]
subfolder = request.rel_url.query["subfolder"]
filename, output_dir = folder_paths.annotated_filepath(filename)
if filename == '' or filename[0] == '/' or '..' in filename:
return web.Response(status=400)
if output_dir is None:
if path_type == 'input':
output_dir = folder_paths.get_input_directory()
elif path_type == 'output':
output_dir = folder_paths.get_output_directory()
else:
output_dir = folder_paths.get_temp_directory()
file = os.path.join(output_dir, subfolder, filename)
item = {
'filename': filename,
'type': path_type,
'subfolder': subfolder,
}
pb_id = core.set_previewbridge_image(node_id, file, item)
return web.Response(status=200, text=pb_id)
except Exception:
traceback.print_exc()
return web.Response(status=400)
@PromptServer.instance.routes.get("/impact/get/pb_id_image")
async def get_previewbridge_image(request):
if "id" in request.rel_url.query:
pb_id = request.rel_url.query["id"]
if pb_id in core.preview_bridge_image_id_map:
_, path_item = core.preview_bridge_image_id_map[pb_id]
return web.json_response(path_item)
return web.Response(status=400)
@PromptServer.instance.routes.get("/impact/view/pb_id_image")
async def view_previewbridge_image(request):
if "id" in request.rel_url.query:
pb_id = request.rel_url.query["id"]
if pb_id in core.preview_bridge_image_id_map:
file = core.preview_bridge_image_id_map[pb_id]
with Image.open(file) as img:
filename = os.path.basename(file)
return web.FileResponse(file, headers={"Content-Disposition": f"filename=\"{filename}\""})
return web.Response(status=400)
def onprompt_for_switch(json_data):
inversed_switch_info = {}
onprompt_switch_info = {}
onprompt_cond_branch_info = {}
for k, v in json_data['prompt'].items():
if 'class_type' not in v:
continue
cls = v['class_type']
if cls == 'ImpactInversedSwitch':
select_input = v['inputs']['select']
if isinstance(select_input, list) and len(select_input) == 2:
input_node = json_data['prompt'][select_input[0]]
if input_node['class_type'] == 'ImpactInt' and 'inputs' in input_node and 'value' in input_node['inputs']:
inversed_switch_info[k] = input_node['inputs']['value']
else:
inversed_switch_info[k] = select_input
elif cls in ['ImpactSwitch', 'LatentSwitch', 'SEGSSwitch', 'ImpactMakeImageList']:
if 'sel_mode' in v['inputs'] and v['inputs']['sel_mode'] and 'select' in v['inputs']:
select_input = v['inputs']['select']
if isinstance(select_input, list) and len(select_input) == 2:
input_node = json_data['prompt'][select_input[0]]
if input_node['class_type'] == 'ImpactInt' and 'inputs' in input_node and 'value' in input_node['inputs']:
onprompt_switch_info[k] = input_node['inputs']['value']
if input_node['class_type'] == 'ImpactSwitch' and 'inputs' in input_node and 'select' in input_node['inputs']:
if isinstance(input_node['inputs']['select'], int):
onprompt_switch_info[k] = input_node['inputs']['select']
else:
print(f"\n##### ##### #####\n[WARN] {cls}: For the 'select' operation, only 'select_index' of the 'ImpactSwitch', which is not an input, or 'ImpactInt' and 'Primitive' are allowed as inputs.\n##### ##### #####\n")
else:
onprompt_switch_info[k] = select_input
elif cls == 'ImpactConditionalBranchSelMode':
if 'sel_mode' in v['inputs'] and v['inputs']['sel_mode'] and 'cond' in v['inputs']:
cond_input = v['inputs']['cond']
if isinstance(cond_input, list) and len(cond_input) == 2:
input_node = json_data['prompt'][cond_input[0]]
if (input_node['class_type'] == 'ImpactValueReceiver' and 'inputs' in input_node
and 'value' in input_node['inputs'] and 'typ' in input_node['inputs']):
if 'BOOLEAN' == input_node['inputs']['typ']:
try:
onprompt_cond_branch_info[k] = input_node['inputs']['value'].lower() == "true"
except:
pass
else:
onprompt_cond_branch_info[k] = cond_input
for k, v in json_data['prompt'].items():
disable_targets = set()
for kk, vv in v['inputs'].items():
if isinstance(vv, list) and len(vv) == 2:
if vv[0] in inversed_switch_info:
if vv[1] + 1 != inversed_switch_info[vv[0]]:
disable_targets.add(kk)
if k in onprompt_switch_info:
selected_slot_name = f"input{onprompt_switch_info[k]}"
for kk, vv in v['inputs'].items():
if kk != selected_slot_name and kk.startswith('input'):
disable_targets.add(kk)
if k in onprompt_cond_branch_info:
selected_slot_name = "tt_value" if onprompt_cond_branch_info[k] else "ff_value"
for kk, vv in v['inputs'].items():
if kk in ['tt_value', 'ff_value'] and kk != selected_slot_name:
disable_targets.add(kk)
for kk in disable_targets:
del v['inputs'][kk]
def onprompt_for_pickers(json_data):
detected_pickers = set()
for k, v in json_data['prompt'].items():
if 'class_type' not in v:
continue
cls = v['class_type']
if cls == 'ImpactSEGSPicker':
detected_pickers.add(k)
# garbage collection
keys_to_remove = [key for key in segs_picker_map if key not in detected_pickers]
for key in keys_to_remove:
del segs_picker_map[key]
def gc_preview_bridge_cache(json_data):
prompt_keys = json_data['prompt'].keys()
for key in list(core.preview_bridge_cache.keys()):
if key not in prompt_keys:
print(f"key deleted: {key}")
del core.preview_bridge_cache[key]
def workflow_imagereceiver_update(json_data):
prompt = json_data['prompt']
for v in prompt.values():
if 'class_type' in v and v['class_type'] == 'ImageReceiver':
if v['inputs']['save_to_workflow']:
v['inputs']['image'] = "#DATA"
def regional_sampler_seed_update(json_data):
prompt = json_data['prompt']
for k, v in prompt.items():
if 'class_type' in v and v['class_type'] == 'RegionalSampler':
seed_2nd_mode = v['inputs']['seed_2nd_mode']
new_seed = None
if seed_2nd_mode == 'increment':
new_seed = v['inputs']['seed_2nd']+1
if new_seed > 1125899906842624:
new_seed = 0
elif seed_2nd_mode == 'decrement':
new_seed = v['inputs']['seed_2nd']-1
if new_seed < 0:
new_seed = 1125899906842624
elif seed_2nd_mode == 'randomize':
new_seed = random.randint(0, 1125899906842624)
if new_seed is not None:
PromptServer.instance.send_sync("impact-node-feedback", {"node_id": k, "widget_name": "seed_2nd", "type": "INT", "value": new_seed})
def onprompt_populate_wildcards(json_data):
prompt = json_data['prompt']
updated_widget_values = {}
for k, v in prompt.items():
if 'class_type' in v and (v['class_type'] == 'ImpactWildcardEncode' or v['class_type'] == 'ImpactWildcardProcessor'):
inputs = v['inputs']
if inputs['mode'] and isinstance(inputs['populated_text'], str):
if isinstance(inputs['seed'], list):
try:
input_node = prompt[inputs['seed'][0]]
if input_node['class_type'] == 'ImpactInt':
input_seed = int(input_node['inputs']['value'])
if not isinstance(input_seed, int):
continue
if input_node['class_type'] == 'Seed (rgthree)':
input_seed = int(input_node['inputs']['seed'])
if not isinstance(input_seed, int):
continue
else:
print(f"[Impact Pack] Only `ImpactInt`, `Seed (rgthree)` and `Primitive` Node are allowed as the seed for '{v['class_type']}'. It will be ignored. ")
continue
except:
continue
else:
input_seed = int(inputs['seed'])
inputs['populated_text'] = wildcards.process(inputs['wildcard_text'], input_seed)
inputs['mode'] = False
PromptServer.instance.send_sync("impact-node-feedback", {"node_id": k, "widget_name": "populated_text", "type": "STRING", "value": inputs['populated_text']})
updated_widget_values[k] = inputs['populated_text']
if 'extra_data' in json_data and 'extra_pnginfo' in json_data['extra_data']:
for node in json_data['extra_data']['extra_pnginfo']['workflow']['nodes']:
key = str(node['id'])
if key in updated_widget_values:
node['widgets_values'][1] = updated_widget_values[key]
node['widgets_values'][2] = False
def onprompt_for_remote(json_data):
prompt = json_data['prompt']
for v in prompt.values():
if 'class_type' in v:
cls = v['class_type']
if cls == 'ImpactRemoteBoolean' or cls == 'ImpactRemoteInt':
inputs = v['inputs']
node_id = str(inputs['node_id'])
if node_id not in prompt:
continue
target_inputs = prompt[node_id]['inputs']
widget_name = inputs['widget_name']
if widget_name in target_inputs:
widget_type = None
if cls == 'ImpactRemoteBoolean' and isinstance(target_inputs[widget_name], bool):
widget_type = 'BOOLEAN'
elif cls == 'ImpactRemoteInt' and (isinstance(target_inputs[widget_name], int) or isinstance(target_inputs[widget_name], float)):
widget_type = 'INT'
if widget_type is None:
break
target_inputs[widget_name] = inputs['value']
PromptServer.instance.send_sync("impact-node-feedback", {"node_id": node_id, "widget_name": widget_name, "type": widget_type, "value": inputs['value']})
def onprompt(json_data):
try:
onprompt_for_remote(json_data) # NOTE: top priority
onprompt_for_switch(json_data)
onprompt_for_pickers(json_data)
onprompt_populate_wildcards(json_data)
gc_preview_bridge_cache(json_data)
workflow_imagereceiver_update(json_data)
regional_sampler_seed_update(json_data)
core.current_prompt = json_data
except Exception as e:
print(f"[WARN] ComfyUI-Impact-Pack: Error on prompt - several features will not work.\n{e}")
return json_data
PromptServer.instance.add_on_prompt_handler(onprompt)
|