File size: 15,435 Bytes
1e3b872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
import os

import torch
from PIL import ImageOps
import comfy
import folder_paths
import base64
from io import BytesIO
from .libs.utils import *


class LoadImagesFromDirBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "directory": ("STRING", {"default": ""}),
            },
            "optional": {
                "image_load_cap": ("INT", {"default": 0, "min": 0, "step": 1}),
                "start_index": ("INT", {"default": 0, "min": 0, "step": 1}),
                "load_always": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}),
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK", "INT")
    FUNCTION = "load_images"

    CATEGORY = "image"

    @classmethod
    def IS_CHANGED(cls, **kwargs):
        if 'load_always' in kwargs and kwargs['load_always']:
            return float("NaN")
        else:
            return hash(frozenset(kwargs))

    def load_images(self, directory: str, image_load_cap: int = 0, start_index: int = 0, load_always=False):
        if not os.path.isdir(directory):
            raise FileNotFoundError(f"Directory '{directory} cannot be found.'")
        dir_files = os.listdir(directory)
        if len(dir_files) == 0:
            raise FileNotFoundError(f"No files in directory '{directory}'.")

        # Filter files by extension
        valid_extensions = ['.jpg', '.jpeg', '.png', '.webp']
        dir_files = [f for f in dir_files if any(f.lower().endswith(ext) for ext in valid_extensions)]

        dir_files = sorted(dir_files)
        dir_files = [os.path.join(directory, x) for x in dir_files]

        # start at start_index
        dir_files = dir_files[start_index:]

        images = []
        masks = []

        limit_images = False
        if image_load_cap > 0:
            limit_images = True
        image_count = 0

        has_non_empty_mask = False

        for image_path in dir_files:
            if os.path.isdir(image_path) and os.path.ex:
                continue
            if limit_images and image_count >= image_load_cap:
                break
            i = Image.open(image_path)
            i = ImageOps.exif_transpose(i)
            image = i.convert("RGB")
            image = np.array(image).astype(np.float32) / 255.0
            image = torch.from_numpy(image)[None,]
            if 'A' in i.getbands():
                mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
                mask = 1. - torch.from_numpy(mask)
                has_non_empty_mask = True
            else:
                mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
            images.append(image)
            masks.append(mask)
            image_count += 1

        if len(images) == 1:
            return (images[0], masks[0], 1)

        elif len(images) > 1:
            image1 = images[0]
            mask1 = None

            for image2 in images[1:]:
                if image1.shape[1:] != image2.shape[1:]:
                    image2 = comfy.utils.common_upscale(image2.movedim(-1, 1), image1.shape[2], image1.shape[1], "bilinear", "center").movedim(1, -1)
                image1 = torch.cat((image1, image2), dim=0)

            for mask2 in masks[1:]:
                if has_non_empty_mask:
                    if image1.shape[1:3] != mask2.shape:
                        mask2 = torch.nn.functional.interpolate(mask2.unsqueeze(0).unsqueeze(0), size=(image1.shape[2], image1.shape[1]), mode='bilinear', align_corners=False)
                        mask2 = mask2.squeeze(0)
                    else:
                        mask2 = mask2.unsqueeze(0)
                else:
                    mask2 = mask2.unsqueeze(0)

                if mask1 is None:
                    mask1 = mask2
                else:
                    mask1 = torch.cat((mask1, mask2), dim=0)

            return (image1, mask1, len(images))


class LoadImagesFromDirList:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "directory": ("STRING", {"default": ""}),
            },
            "optional": {
                "image_load_cap": ("INT", {"default": 0, "min": 0, "step": 1}),
                "start_index": ("INT", {"default": 0, "min": 0, "step": 1}),
                "load_always": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}),
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    OUTPUT_IS_LIST = (True, True)

    FUNCTION = "load_images"

    CATEGORY = "image"

    @classmethod
    def IS_CHANGED(cls, **kwargs):
        if 'load_always' in kwargs and kwargs['load_always']:
            return float("NaN")
        else:
            return hash(frozenset(kwargs))

    def load_images(self, directory: str, image_load_cap: int = 0, start_index: int = 0, load_always=False):
        if not os.path.isdir(directory):
            raise FileNotFoundError(f"Directory '{directory}' cannot be found.")
        dir_files = os.listdir(directory)
        if len(dir_files) == 0:
            raise FileNotFoundError(f"No files in directory '{directory}'.")

        # Filter files by extension
        valid_extensions = ['.jpg', '.jpeg', '.png', '.webp']
        dir_files = [f for f in dir_files if any(f.lower().endswith(ext) for ext in valid_extensions)]

        dir_files = sorted(dir_files)
        dir_files = [os.path.join(directory, x) for x in dir_files]

        # start at start_index
        dir_files = dir_files[start_index:]

        images = []
        masks = []

        limit_images = False
        if image_load_cap > 0:
            limit_images = True
        image_count = 0

        for image_path in dir_files:
            if os.path.isdir(image_path) and os.path.ex:
                continue
            if limit_images and image_count >= image_load_cap:
                break
            i = Image.open(image_path)
            i = ImageOps.exif_transpose(i)
            image = i.convert("RGB")
            image = np.array(image).astype(np.float32) / 255.0
            image = torch.from_numpy(image)[None,]

            if 'A' in i.getbands():
                mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
                mask = 1. - torch.from_numpy(mask)
            else:
                mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")

            images.append(image)
            masks.append(mask)
            image_count += 1

        return images, masks


class LoadImageInspire:
    @classmethod
    def INPUT_TYPES(s):
        input_dir = folder_paths.get_input_directory()
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
        return {"required": {
                                "image": (sorted(files) + ["#DATA"], {"image_upload": True}),
                                "image_data": ("STRING", {"multiline": False}),
                            }
                }

    CATEGORY = "InspirePack/image"

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "load_image"

    def load_image(self, image, image_data):
        image_data = base64.b64decode(image_data.split(",")[1])
        i = Image.open(BytesIO(image_data))
        i = ImageOps.exif_transpose(i)
        image = i.convert("RGB")
        image = np.array(image).astype(np.float32) / 255.0
        image = torch.from_numpy(image)[None,]
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
        return (image, mask.unsqueeze(0))


class ChangeImageBatchSize:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                                "image": ("IMAGE",),
                                "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "step": 1}),
                                "mode": (["simple"],)
                            }
                }

    CATEGORY = "InspirePack/Util"

    RETURN_TYPES = ("IMAGE", )
    FUNCTION = "doit"

    @staticmethod
    def resize_tensor(input_tensor, batch_size, mode):
        if mode == "simple":
            if len(input_tensor) < batch_size:
                last_frame = input_tensor[-1].unsqueeze(0).expand(batch_size - len(input_tensor), -1, -1, -1)
                output_tensor = torch.concat((input_tensor, last_frame), dim=0)
            else:
                output_tensor = input_tensor[:batch_size, :, :, :]
            return output_tensor
        else:
            print(f"[WARN] ChangeImage(Latent)BatchSize: Unknown mode `{mode}` - ignored")
            return input_tensor

    @staticmethod
    def doit(image, batch_size, mode):
        res = ChangeImageBatchSize.resize_tensor(image, batch_size, mode)
        return (res,)


class ChangeLatentBatchSize:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                                "latent": ("LATENT",),
                                "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "step": 1}),
                                "mode": (["simple"],)
                            }
                }

    CATEGORY = "InspirePack/Util"

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "doit"

    @staticmethod
    def doit(latent, batch_size, mode):
        res_latent = latent.copy()
        samples = res_latent['samples']
        samples = ChangeImageBatchSize.resize_tensor(samples, batch_size, mode)
        res_latent['samples'] = samples
        return (res_latent,)


class ImageBatchSplitter:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                    "images": ("IMAGE",),
                    "split_count": ("INT", {"default": 4, "min": 0, "max": 50, "step": 1}),
                    },
                }

    RETURN_TYPES = ByPassTypeTuple(("IMAGE", ))
    FUNCTION = "doit"

    CATEGORY = "InspirePack/Util"

    def doit(self, images, split_count):
        cnt = min(split_count, len(images))
        res = [image.unsqueeze(0) for image in images[:cnt]]

        if split_count >= len(images):
            lack_cnt = split_count - cnt + 1  # including remained
            empty_image = empty_pil_tensor()
            for x in range(0, lack_cnt):
                res.append(empty_image)
        elif cnt < len(images):
            remained_cnt = len(images) - cnt
            remained_image = images[-remained_cnt:]
            res.append(remained_image)

        return tuple(res)


class LatentBatchSplitter:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                    "latent": ("LATENT",),
                    "split_count": ("INT", {"default": 4, "min": 0, "max": 50, "step": 1}),
                    },
                }

    RETURN_TYPES = ByPassTypeTuple(("LATENT", ))
    FUNCTION = "doit"

    CATEGORY = "InspirePack/Util"

    def doit(self, latent, split_count):
        samples = latent['samples']

        latent_base = latent.copy()
        del latent_base['samples']

        cnt = min(split_count, len(samples))
        res = []

        for single_samples in samples[:cnt]:
            item = latent_base.copy()
            item['samples'] = single_samples.unsqueeze(0)
            res.append(item)

        if split_count >= len(samples):
            lack_cnt = split_count - cnt + 1  # including remained
            item = latent_base.copy()
            item['samples'] = empty_latent()

            for x in range(0, lack_cnt):
                res.append(item)

        elif cnt < len(samples):
            remained_cnt = len(samples) - cnt
            remained_latent = latent_base.copy()
            remained_latent['samples'] = samples[-remained_cnt:]
            res.append(remained_latent)

        return tuple(res)


def top_k_colors(image_tensor, k, min_pixels):
    flattened_image = image_tensor.view(-1, image_tensor.size(-1))

    unique_colors, counts = torch.unique(flattened_image, dim=0, return_counts=True)

    sorted_counts, sorted_indices = torch.sort(counts, descending=True)
    sorted_colors = unique_colors[sorted_indices]

    filtered_colors = sorted_colors[sorted_counts >= min_pixels]

    return filtered_colors[:k]


def create_mask(image_tensor, color):
    mask_tensor = torch.zeros_like(image_tensor[:, :, :, 0])
    mask_tensor = torch.where(torch.all(image_tensor == color, dim=-1, keepdim=False), 1, mask_tensor)
    return mask_tensor


class ColorMapToMasks:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                    "color_map": ("IMAGE",),
                    "min_pixels": ("INT", {"default": 500, "min": 1, "max": 0xffffffffffffffff, "step": 1}),
                    "max_count": ("INT", {"default": 5, "min": 0, "max": 1000, "step": 1}),
                    },
                }

    RETURN_TYPES = ("MASK",)
    FUNCTION = "doit"

    CATEGORY = "InspirePack/Util"

    def doit(self, color_map, max_count, min_pixels):
        if len(color_map) > 0:
            print(f"[Inspire Pack] WARN: ColorMapToMasks - Sure, here's the translation: `color_map` can only be a single image. Only the first image will be processed. If you want to utilize the remaining images, convert the Image Batch to an Image List.")

        top_colors = top_k_colors(color_map[0], max_count, min_pixels)

        masks = None

        for color in top_colors:
            this_mask = create_mask(color_map, color)
            if masks is None:
                masks = this_mask
            else:
                masks = torch.concat((masks, this_mask), dim=0)

        if masks is None:
            masks = torch.zeros_like(color_map[0, :, :, 0])
            masks.unsqueeze(0)

        return (masks,)


class SelectNthMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                    "masks": ("MASK",),
                    "idx": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "step": 1}),
                    },
                }

    RETURN_TYPES = ("MASK",)
    FUNCTION = "doit"
    CATEGORY = "InspirePack/Util"

    def doit(self, masks, idx):
        return (masks[idx].unsqueeze(0),)


NODE_CLASS_MAPPINGS = {
    "LoadImagesFromDir //Inspire": LoadImagesFromDirBatch,
    "LoadImageListFromDir //Inspire": LoadImagesFromDirList,
    "LoadImage //Inspire": LoadImageInspire,
    "ChangeImageBatchSize //Inspire": ChangeImageBatchSize,
    "ChangeLatentBatchSize //Inspire": ChangeLatentBatchSize,
    "ImageBatchSplitter //Inspire": ImageBatchSplitter,
    "LatentBatchSplitter //Inspire": LatentBatchSplitter,
    "ColorMapToMasks //Inspire": ColorMapToMasks,
    "SelectNthMask //Inspire": SelectNthMask
}

NODE_DISPLAY_NAME_MAPPINGS = {
    "LoadImagesFromDir //Inspire": "Load Image Batch From Dir (Inspire)",
    "LoadImageListFromDir //Inspire": "Load Image List From Dir (Inspire)",
    "LoadImage //Inspire": "Load Image (Inspire)",
    "ChangeImageBatchSize //Inspire": "Change Image Batch Size (Inspire)",
    "ChangeLatentBatchSize //Inspire": "Change Latent Batch Size (Inspire)",
    "ImageBatchSplitter //Inspire": "Image Batch Splitter (Inspire)",
    "LatentBatchSplitter //Inspire": "Latent Batch Splitter (Inspire)",
    "ColorMapToMasks //Inspire": "Color Map To Masks (Inspire)",
    "SelectNthMask //Inspire": "Select Nth Mask (Inspire)"
}