File size: 19,709 Bytes
1e3b872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
__SDXL is now supported. The sdxl branch has been merged into the main branch. If you update the repository, please follow the upgrade instructions. Also, the version of accelerate has been updated, so please run accelerate config again.__ The documentation for SDXL training is [here](./README.md#sdxl-training).

This repository contains training, generation and utility scripts for Stable Diffusion.

[__Change History__](#change-history) is moved to the bottom of the page. 
更新履歴は[ページ末尾](#change-history)に移しました。

[日本語版READMEはこちら](./README-ja.md)

For easier use (GUI and PowerShell scripts etc...), please visit [the repository maintained by bmaltais](https://github.com/bmaltais/kohya_ss). Thanks to @bmaltais!

This repository contains the scripts for:

* DreamBooth training, including U-Net and Text Encoder
* Fine-tuning (native training), including U-Net and Text Encoder
* LoRA training
* Textual Inversion training
* Image generation
* Model conversion (supports 1.x and 2.x, Stable Diffision ckpt/safetensors and Diffusers)

## About requirements.txt

These files do not contain requirements for PyTorch. Because the versions of them depend on your environment. Please install PyTorch at first (see installation guide below.) 

The scripts are tested with Pytorch 2.0.1. 1.12.1 is not tested but should work.

## Links to usage documentation

Most of the documents are written in Japanese.

[English translation by darkstorm2150 is here](https://github.com/darkstorm2150/sd-scripts#links-to-usage-documentation). Thanks to darkstorm2150!

* [Training guide - common](./docs/train_README-ja.md) : data preparation, options etc... 
  * [Chinese version](./docs/train_README-zh.md)
* [Dataset config](./docs/config_README-ja.md) 
* [DreamBooth training guide](./docs/train_db_README-ja.md)
* [Step by Step fine-tuning guide](./docs/fine_tune_README_ja.md):
* [training LoRA](./docs/train_network_README-ja.md)
* [training Textual Inversion](./docs/train_ti_README-ja.md)
* [Image generation](./docs/gen_img_README-ja.md)
* note.com [Model conversion](https://note.com/kohya_ss/n/n374f316fe4ad)

## Windows Required Dependencies

Python 3.10.6 and Git:

- Python 3.10.6: https://www.python.org/ftp/python/3.10.6/python-3.10.6-amd64.exe
- git: https://git-scm.com/download/win

Give unrestricted script access to powershell so venv can work:

- Open an administrator powershell window
- Type `Set-ExecutionPolicy Unrestricted` and answer A
- Close admin powershell window

## Windows Installation

Open a regular Powershell terminal and type the following inside:

```powershell

git clone https://github.com/kohya-ss/sd-scripts.git

cd sd-scripts



python -m venv venv

.\venv\Scripts\activate



pip install torch==2.0.1+cu118 torchvision==0.15.2+cu118 --index-url https://download.pytorch.org/whl/cu118

pip install --upgrade -r requirements.txt

pip install xformers==0.0.20



accelerate config

```

__Note:__ Now bitsandbytes is optional. Please install any version of bitsandbytes as needed. Installation instructions are in the following section.

<!-- 
cp .\bitsandbytes_windows\*.dll .\venv\Lib\site-packages\bitsandbytes\

cp .\bitsandbytes_windows\cextension.py .\venv\Lib\site-packages\bitsandbytes\cextension.py
cp .\bitsandbytes_windows\main.py .\venv\Lib\site-packages\bitsandbytes\cuda_setup\main.py
-->
Answers to accelerate config:

```txt

- This machine

- No distributed training

- NO

- NO

- NO

- all

- fp16

```

note: Some user reports ``ValueError: fp16 mixed precision requires a GPU`` is occurred in training. In this case, answer `0` for the 6th question: 
``What GPU(s) (by id) should be used for training on this machine as a comma-separated list? [all]:`` 

(Single GPU with id `0` will be used.)

### Optional: Use `bitsandbytes` (8bit optimizer)

For 8bit optimizer, you need to install `bitsandbytes`. For Linux, please install `bitsandbytes` as usual (0.41.1 or later is recommended.)

For Windows, there are several versions of `bitsandbytes`:

- `bitsandbytes` 0.35.0: Stable version. AdamW8bit is available. `full_bf16` is not available.
- `bitsandbytes` 0.41.1: Lion8bit, PagedAdamW8bit and PagedLion8bit are available. `full_bf16` is available.

Note: `bitsandbytes`above 0.35.0 till 0.41.0 seems to have an issue: https://github.com/TimDettmers/bitsandbytes/issues/659

Follow the instructions below to install `bitsandbytes` for Windows.

### bitsandbytes 0.35.0 for Windows

Open a regular Powershell terminal and type the following inside:

```powershell

cd sd-scripts

.\venv\Scripts\activate

pip install bitsandbytes==0.35.0



cp .\bitsandbytes_windows\*.dll .\venv\Lib\site-packages\bitsandbytes\

cp .\bitsandbytes_windows\cextension.py .\venv\Lib\site-packages\bitsandbytes\cextension.py

cp .\bitsandbytes_windows\main.py .\venv\Lib\site-packages\bitsandbytes\cuda_setup\main.py

```

This will install `bitsandbytes` 0.35.0 and copy the necessary files to the `bitsandbytes` directory.

### bitsandbytes 0.41.1 for Windows

Install the Windows version whl file from [here](https://github.com/jllllll/bitsandbytes-windows-webui) or other sources, like:

```powershell

python -m pip install bitsandbytes==0.41.1 --prefer-binary --extra-index-url=https://jllllll.github.io/bitsandbytes-windows-webui

```

## Upgrade

When a new release comes out you can upgrade your repo with the following command:

```powershell

cd sd-scripts

git pull

.\venv\Scripts\activate

pip install --use-pep517 --upgrade -r requirements.txt

```

Once the commands have completed successfully you should be ready to use the new version.

## Credits

The implementation for LoRA is based on [cloneofsimo's repo](https://github.com/cloneofsimo/lora). Thank you for great work!

The LoRA expansion to Conv2d 3x3 was initially released by cloneofsimo and its effectiveness was demonstrated at [LoCon](https://github.com/KohakuBlueleaf/LoCon) by KohakuBlueleaf. Thank you so much KohakuBlueleaf!

## License

The majority of scripts is licensed under ASL 2.0 (including codes from Diffusers, cloneofsimo's and LoCon), however portions of the project are available under separate license terms:

[Memory Efficient Attention Pytorch](https://github.com/lucidrains/memory-efficient-attention-pytorch): MIT

[bitsandbytes](https://github.com/TimDettmers/bitsandbytes): MIT

[BLIP](https://github.com/salesforce/BLIP): BSD-3-Clause


## SDXL training

The documentation in this section will be moved to a separate document later.

### Training scripts for SDXL

- `sdxl_train.py` is a script for SDXL fine-tuning. The usage is almost the same as `fine_tune.py`, but it also supports DreamBooth dataset.
  - `--full_bf16` option is added. Thanks to KohakuBlueleaf!
    - This option enables the full bfloat16 training (includes gradients). This option is useful to reduce the GPU memory usage. 
    - The full bfloat16 training might be unstable. Please use it at your own risk.
  - The different learning rates for each U-Net block are now supported in sdxl_train.py. Specify with `--block_lr` option. Specify 23 values separated by commas like `--block_lr 1e-3,1e-3 ... 1e-3`.

    - 23 values correspond to `0: time/label embed, 1-9: input blocks 0-8, 10-12: mid blocks 0-2, 13-21: output blocks 0-8, 22: out`.

- `prepare_buckets_latents.py` now supports SDXL fine-tuning.



- `sdxl_train_network.py` is a script for LoRA training for SDXL. The usage is almost the same as `train_network.py`.

- Both scripts has following additional options:
  - `--cache_text_encoder_outputs` and `--cache_text_encoder_outputs_to_disk`: Cache the outputs of the text encoders. This option is useful to reduce the GPU memory usage. This option cannot be used with options for shuffling or dropping the captions.
  - `--no_half_vae`: Disable the half-precision (mixed-precision) VAE. VAE for SDXL seems to produce NaNs in some cases. This option is useful to avoid the NaNs.

- `--weighted_captions` option is not supported yet for both scripts.

- `sdxl_train_textual_inversion.py` is a script for Textual Inversion training for SDXL. The usage is almost the same as `train_textual_inversion.py`.
  - `--cache_text_encoder_outputs` is not supported.
  - There are two options for captions:
    1. Training with captions. All captions must include the token string. The token string is replaced with multiple tokens.
    2. Use `--use_object_template` or `--use_style_template` option. The captions are generated from the template. The existing captions are ignored.
  - See below for the format of the embeddings.

- `--min_timestep` and `--max_timestep` options are added to each training script. These options can be used to train U-Net with different timesteps. The default values are 0 and 1000.

### Utility scripts for SDXL

- `tools/cache_latents.py` is added. This script can be used to cache the latents to disk in advance. 
  - The options are almost the same as `sdxl_train.py'. See the help message for the usage.

  - Please launch the script as follows:

    `accelerate launch  --num_cpu_threads_per_process 1 tools/cache_latents.py ...`
  - This script should work with multi-GPU, but it is not tested in my environment.

- `tools/cache_text_encoder_outputs.py` is added. This script can be used to cache the text encoder outputs to disk in advance. 
  - The options are almost the same as `cache_latents.py` and `sdxl_train.py`. See the help message for the usage.

- `sdxl_gen_img.py` is added. This script can be used to generate images with SDXL, including LoRA, Textual Inversion and ControlNet-LLLite. See the help message for the usage.

### Tips for SDXL training

- The default resolution of SDXL is 1024x1024.
- The fine-tuning can be done with 24GB GPU memory with the batch size of 1. For 24GB GPU, the following options are recommended __for the fine-tuning with 24GB GPU memory__:
  - Train U-Net only.
  - Use gradient checkpointing.
  - Use `--cache_text_encoder_outputs` option and caching latents.
  - Use Adafactor optimizer. RMSprop 8bit or Adagrad 8bit may work. AdamW 8bit doesn't seem to work.
- The LoRA training can be done with 8GB GPU memory (10GB recommended). For reducing the GPU memory usage, the following options are recommended:
  - Train U-Net only.
  - Use gradient checkpointing.
  - Use `--cache_text_encoder_outputs` option and caching latents.
  - Use one of 8bit optimizers or Adafactor optimizer.
  - Use lower dim (4 to 8 for 8GB GPU).
- `--network_train_unet_only` option is highly recommended for SDXL LoRA. Because SDXL has two text encoders, the result of the training will be unexpected.
- PyTorch 2 seems to use slightly less GPU memory than PyTorch 1.
- `--bucket_reso_steps` can be set to 32 instead of the default value 64. Smaller values than 32 will not work for SDXL training.

Example of the optimizer settings for Adafactor with the fixed learning rate:
```toml

optimizer_type = "adafactor"

optimizer_args = [ "scale_parameter=False", "relative_step=False", "warmup_init=False" ]

lr_scheduler = "constant_with_warmup"

lr_warmup_steps = 100

learning_rate = 4e-7 # SDXL original learning rate

```

### Format of Textual Inversion embeddings for SDXL

```python

from safetensors.torch import save_file



state_dict = {"clip_g": embs_for_text_encoder_1280, "clip_l": embs_for_text_encoder_768}

save_file(state_dict, file)

```

### ControlNet-LLLite

ControlNet-LLLite, a novel method for ControlNet with SDXL, is added. See [documentation](./docs/train_lllite_README.md) for details.


## Change History

### Nov 5, 2023 / 2023/11/5

- `sdxl_train.py` now supports different learning rates for each Text Encoder.
  - Example:
    - `--learning_rate 1e-6`: train U-Net only
    - `--train_text_encoder --learning_rate 1e-6`: train U-Net and two Text Encoders with the same learning rate (same as the previous version)
    - `--train_text_encoder --learning_rate 1e-6 --learning_rate_te1 1e-6 --learning_rate_te2 1e-6`: train U-Net and two Text Encoders with the different learning rates
    - `--train_text_encoder --learning_rate 0 --learning_rate_te1 1e-6 --learning_rate_te2 1e-6`: train two Text Encoders only 
    - `--train_text_encoder --learning_rate 1e-6 --learning_rate_te1 1e-6 --learning_rate_te2 0`: train U-Net and one Text Encoder only
    - `--train_text_encoder --learning_rate 0 --learning_rate_te1 0 --learning_rate_te2 1e-6`: train one Text Encoder only

- `train_db.py` and `fine_tune.py` now support different learning rates for Text Encoder. Specify with `--learning_rate_te` option. 
  - To train Text Encoder with `fine_tune.py`, specify `--train_text_encoder` option too. `train_db.py` trains Text Encoder by default.

- Fixed the bug that Text Encoder is not trained when block lr is specified in `sdxl_train.py`.

- Debiased Estimation loss is added to each training script. Thanks to sdbds!
  - Specify `--debiased_estimation_loss` option to enable it. See PR [#889](https://github.com/kohya-ss/sd-scripts/pull/889) for details.
- Training of Text Encoder is improved in `train_network.py` and `sdxl_train_network.py`. Thanks to KohakuBlueleaf! PR [#895](https://github.com/kohya-ss/sd-scripts/pull/895)
- The moving average of the loss is now displayed in the progress bar in each training script. Thanks to shirayu! PR [#899](https://github.com/kohya-ss/sd-scripts/pull/899)
- PagedAdamW32bit optimizer is supported. Specify `--optimizer_type=PagedAdamW32bit`. Thanks to xzuyn! PR [#900](https://github.com/kohya-ss/sd-scripts/pull/900)
- Other bug fixes and improvements.

- `sdxl_train.py` で、二つのText Encoderそれぞれに独立した学習率が指定できるようになりました。サンプルは上の英語版を参照してください。
- `train_db.py` および `fine_tune.py` で Text Encoder に別の学習率を指定できるようになりました。`--learning_rate_te` オプションで指定してください。
  - `fine_tune.py` で Text Encoder を学習するには `--train_text_encoder` オプションをあわせて指定してください。`train_db.py` はデフォルトで学習します。
- `sdxl_train.py` で block lr を指定すると Text Encoder が学習されない不具合を修正しました。
- Debiased Estimation loss が各学習スクリプトに追加されました。sdbsd 氏に感謝します。
  - `--debiased_estimation_loss` を指定すると有効になります。詳細は PR [#889](https://github.com/kohya-ss/sd-scripts/pull/889) を参照してください。
- `train_network.py``sdxl_train_network.py` でText Encoderの学習が改善されました。KohakuBlueleaf 氏に感謝します。 PR [#895](https://github.com/kohya-ss/sd-scripts/pull/895)
- 各学習スクリプトで移動平均のlossがプログレスバーに表示されるようになりました。shirayu 氏に感謝します。 PR [#899](https://github.com/kohya-ss/sd-scripts/pull/899)
- PagedAdamW32bit オプティマイザがサポートされました。`--optimizer_type=PagedAdamW32bit` と指定してください。xzuyn 氏に感謝します。 PR [#900](https://github.com/kohya-ss/sd-scripts/pull/900)
- その他のバグ修正と改善。


Please read [Releases](https://github.com/kohya-ss/sd-scripts/releases) for recent updates.
最近の更新情報は [Release](https://github.com/kohya-ss/sd-scripts/releases) をご覧ください。

### Naming of LoRA

The LoRA supported by `train_network.py` has been named to avoid confusion. The documentation has been updated. The following are the names of LoRA types in this repository.

1. __LoRA-LierLa__ : (LoRA for __Li__ n __e__ a __r__  __La__ yers)

    LoRA for Linear layers and Conv2d layers with 1x1 kernel


2. __LoRA-C3Lier__ : (LoRA for __C__ olutional layers with __3__ x3 Kernel and  __Li__ n __e__ a __r__ layers)

    In addition to 1., LoRA for Conv2d layers with 3x3 kernel 

    

LoRA-LierLa is the default LoRA type for `train_network.py` (without `conv_dim` network arg). LoRA-LierLa can be used with [our extension](https://github.com/kohya-ss/sd-webui-additional-networks) for AUTOMATIC1111's Web UI, or with the built-in LoRA feature of the Web UI.


To use LoRA-C3Lier with Web UI, please use our extension.

### LoRAの名称について

`train_network.py` がサポートするLoRAについて、混乱を避けるため名前を付けました。ドキュメントは更新済みです。以下は当リポジトリ内の独自の名称です。

1. __LoRA-LierLa__ : (LoRA for __Li__ n __e__ a __r__  __La__ yers、リエラと読みます)

    Linear 層およびカーネルサイズ 1x1 の Conv2d 層に適用されるLoRA


2. __LoRA-C3Lier__ : (LoRA for __C__ olutional layers with __3__ x3 Kernel and  __Li__ n __e__ a __r__ layers、セリアと読みます)

    1.に加え、カーネルサイズ 3x3 の Conv2d 層に適用されるLoRA


LoRA-LierLa は[Web UI向け拡張](https://github.com/kohya-ss/sd-webui-additional-networks)、またはAUTOMATIC1111氏のWeb UIのLoRA機能で使用することができます。

LoRA-C3Lierを使いWeb UIで生成するには拡張を使用してください。

## Sample image generation during training
  A prompt file might look like this, for example

```

# prompt 1

masterpiece, best quality, (1girl), in white shirts, upper body, looking at viewer, simple background --n low quality, worst quality, bad anatomy,bad composition, poor, low effort --w 768 --h 768 --d 1 --l 7.5 --s 28



# prompt 2

masterpiece, best quality, 1boy, in business suit, standing at street, looking back --n (low quality, worst quality), bad anatomy,bad composition, poor, low effort --w 576 --h 832 --d 2 --l 5.5 --s 40

```

  Lines beginning with `#` are comments. You can specify options for the generated image with options like `--n` after the prompt. The following can be used.

  * `--n` Negative prompt up to the next option.
  * `--w` Specifies the width of the generated image.
  * `--h` Specifies the height of the generated image.
  * `--d` Specifies the seed of the generated image.
  * `--l` Specifies the CFG scale of the generated image.
  * `--s` Specifies the number of steps in the generation.

  The prompt weighting such as `( )` and `[ ]` are working.

## サンプル画像生成
プロンプトファイルは例えば以下のようになります。

```

# prompt 1

masterpiece, best quality, (1girl), in white shirts, upper body, looking at viewer, simple background --n low quality, worst quality, bad anatomy,bad composition, poor, low effort --w 768 --h 768 --d 1 --l 7.5 --s 28



# prompt 2

masterpiece, best quality, 1boy, in business suit, standing at street, looking back --n (low quality, worst quality), bad anatomy,bad composition, poor, low effort --w 576 --h 832 --d 2 --l 5.5 --s 40

```

  `#` で始まる行はコメントになります。`--n` のように「ハイフン二個+英小文字」の形でオプションを指定できます。以下が使用可能できます。

  * `--n` Negative prompt up to the next option.
  * `--w` Specifies the width of the generated image.
  * `--h` Specifies the height of the generated image.
  * `--d` Specifies the seed of the generated image.
  * `--l` Specifies the CFG scale of the generated image.
  * `--s` Specifies the number of steps in the generation.

  `( )``[ ]` などの重みづけも動作します。