File size: 20,769 Bytes
1e3b872 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
# Original LoRA train script by @Akegarasu ; rewritten in Python by LJRE.
import subprocess
import os
import folder_paths
import random
from comfy import model_management
import torch
#Train data path | 设置训练用模型、图片
#pretrained_model = "E:\AI-Image\ComfyUI_windows_portable_nvidia_cu121_or_cpu\ComfyUI_windows_portable\ComfyUI\models\checkpoints\MyAnimeModel.ckpt"
is_v2_model = 0 # SD2.0 model | SD2.0模型 2.0模型下 clip_skip 默认无效
parameterization = 0 # parameterization | 参数化 本参数需要和 V2 参数同步使用 实验性功能
#train_data_dir = "" # train dataset path | 训练数据集路径
reg_data_dir = "" # directory for regularization images | 正则化数据集路径,默认不使用正则化图像。
# Network settings | 网络设置
network_module = "networks.lora" # 在这里将会设置训练的网络种类,默认为 networks.lora 也就是 LoRA 训练。如果你想训练 LyCORIS(LoCon、LoHa) 等,则修改这个值为 lycoris.kohya
network_weights = "" # pretrained weights for LoRA network | 若需要从已有的 LoRA 模型上继续训练,请填写 LoRA 模型路径。
network_dim = 32 # network dim | 常用 4~128,不是越大越好
network_alpha = 32 # network alpha | 常用与 network_dim 相同的值或者采用较小的值,如 network_dim的一半 防止下溢。默认值为 1,使用较小的 alpha 需要提升学习率。
# Train related params | 训练相关参数
resolution = "512,512" # image resolution w,h. 图片分辨率,宽,高。支持非正方形,但必须是 64 倍数。
#batch_size = 1 # batch size | batch 大小
#max_train_epoches = 10 # max train epoches | 最大训练 epoch
#save_every_n_epochs = 10 # save every n epochs | 每 N 个 epoch 保存一次
train_unet_only = 0 # train U-Net only | 仅训练 U-Net,开启这个会牺牲效果大幅减少显存使用。6G显存可以开启
train_text_encoder_only = 0 # train Text Encoder only | 仅训练 文本编码器
stop_text_encoder_training = 0 # stop text encoder training | 在第 N 步时停止训练文本编码器
noise_offset = 0 # noise offset | 在训练中添加噪声偏移来改良生成非常暗或者非常亮的图像,如果启用,推荐参数为 0.1
keep_tokens = 0 # keep heading N tokens when shuffling caption tokens | 在随机打乱 tokens 时,保留前 N 个不变。
min_snr_gamma = 0 # minimum signal-to-noise ratio (SNR) value for gamma-ray | 伽马射线事件的最小信噪比(SNR)值 默认为 0
# Learning rate | 学习率
lr = "1e-4" # learning rate | 学习率,在分别设置下方 U-Net 和 文本编码器 的学习率时,该参数失效
unet_lr = "1e-4" # U-Net learning rate | U-Net 学习率
text_encoder_lr = "1e-5" # Text Encoder learning rate | 文本编码器 学习率
lr_scheduler = "cosine_with_restarts" # "linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"
lr_warmup_steps = 0 # warmup steps | 学习率预热步数,lr_scheduler 为 constant 或 adafactor 时该值需要设为0。
lr_restart_cycles = 1 # cosine_with_restarts restart cycles | 余弦退火重启次数,仅在 lr_scheduler 为 cosine_with_restarts 时起效。
# 优化器设置
optimizer_type = "AdamW8bit" # Optimizer type | 优化器类型 默认为 AdamW8bit,可选:AdamW AdamW8bit Lion Lion8bit SGDNesterov SGDNesterov8bit DAdaptation AdaFactor prodigy
# Output settings | 输出设置
#output_name = "Pkmn3GTest" # output model name | 模型保存名称
save_model_as = "safetensors" # model save ext | 模型保存格式 ckpt, pt, safetensors
# Resume training state | 恢复训练设置
save_state = 0 # save training state | 保存训练状态 名称类似于 <output_name>-??????-state ?????? 表示 epoch 数
resume = "" # resume from state | 从某个状态文件夹中恢复训练 需配合上方参数同时使用 由于规范文件限制 epoch 数和全局步数不会保存 即使恢复时它们也从 1 开始 与 network_weights 的具体实现操作并不一致
# 其他设置
min_bucket_reso = 256 # arb min resolution | arb 最小分辨率
max_bucket_reso = 1584 # arb max resolution | arb 最大分辨率
persistent_data_loader_workers = 1 # persistent dataloader workers | 保留加载训练集的worker,减少每个 epoch 之间的停顿
#clip_skip = 2 # clip skip | 玄学 一般用 2
multi_gpu = 0 # multi gpu | 多显卡训练 该参数仅限在显卡数 >= 2 使用
lowram = 0 # lowram mode | 低内存模式 该模式下会将 U-net 文本编码器 VAE 转移到 GPU 显存中 启用该模式可能会对显存有一定影响
# LyCORIS 训练设置
algo = "lora" # LyCORIS network algo | LyCORIS 网络算法 可选 lora、loha、lokr、ia3、dylora。lora即为locon
conv_dim = 4 # conv dim | 类似于 network_dim,推荐为 4
conv_alpha = 4 # conv alpha | 类似于 network_alpha,可以采用与 conv_dim 一致或者更小的值
dropout = "0" # dropout | dropout 概率, 0 为不使用 dropout, 越大则 dropout 越多,推荐 0~0.5, LoHa/LoKr/(IA)^3 暂时不支持
# 远程记录设置
use_wandb = 0 # enable wandb logging | 启用wandb远程记录功能
wandb_api_key = "" # wandb api key | API,通过 https://wandb.ai/authorize 获取
log_tracker_name = "" # wandb log tracker name | wandb项目名称,留空则为"network_train"
#output_dir = ''
logging_dir = './logs'
log_prefix = ''
mixed_precision = 'fp16'
caption_extension = '.txt'
os.environ['HF_HOME'] = "huggingface"
os.environ['XFORMERS_FORCE_DISABLE_TRITON'] = "1"
ext_args = []
launch_args = []
class LoraTraininginComfy:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
#"theseed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"data_path": ("STRING", {"default": "Insert path of image folders"}),
"batch_size": ("INT", {"default": 1, "min":1}),
"max_train_epoches": ("INT", {"default":10, "min":1}),
"save_every_n_epochs": ("INT", {"default":10, "min":1}),
#"lr": ("INT": {"default":"1e-4"}),
#"optimizer_type": ("STRING", {["AdamW8bit", "Lion8bit", "SGDNesterov8bit", "AdaFactor", "prodigy"]}),
"output_name": ("STRING", {"default":'Desired name for LoRA.'}),
"clip_skip": ("INT", {"default":2, "min":1}),
"output_dir": ("STRING", {"default":'models/loras'}),
},
}
RETURN_TYPES = ()
RETURN_NAMES = ()
FUNCTION = "loratraining"
OUTPUT_NODE = True
CATEGORY = "LJRE/LORA"
def loratraining(self, ckpt_name, data_path, batch_size, max_train_epoches, save_every_n_epochs, output_name, clip_skip, output_dir):
#free memory first of all
loadedmodels=model_management.current_loaded_models
unloaded_model = False
for i in range(len(loadedmodels) -1, -1, -1):
m = loadedmodels.pop(i)
m.model_unload()
del m
unloaded_model = True
if unloaded_model:
model_management.soft_empty_cache()
print(model_management.current_loaded_models)
#loadedmodel = model_management.LoadedModel()
#loadedmodel.model_unload(self, current_loaded_models)
#transform backslashes into slashes for user convenience.
train_data_dir = data_path.replace( "\\", "/")
#print(train_data_dir)
#generates a random seed
theseed = random.randint(0, 2^32-1)
if multi_gpu:
launch_args.append("--multi_gpu")
if lowram:
ext_args.append("--lowram")
if is_v2_model:
ext_args.append("--v2")
else:
ext_args.append(f"--clip_skip={clip_skip}")
if parameterization:
ext_args.append("--v_parameterization")
if train_unet_only:
ext_args.append("--network_train_unet_only")
if train_text_encoder_only:
ext_args.append("--network_train_text_encoder_only")
if network_weights:
ext_args.append(f"--network_weights={network_weights}")
if reg_data_dir:
ext_args.append(f"--reg_data_dir={reg_data_dir}")
if optimizer_type:
ext_args.append(f"--optimizer_type={optimizer_type}")
if optimizer_type == "DAdaptation":
ext_args.append("--optimizer_args")
ext_args.append("decouple=True")
if network_module == "lycoris.kohya":
ext_args.extend([
f"--network_args",
f"conv_dim={conv_dim}",
f"conv_alpha={conv_alpha}",
f"algo={algo}",
f"dropout={dropout}"
])
if noise_offset != 0:
ext_args.append(f"--noise_offset={noise_offset}")
if stop_text_encoder_training != 0:
ext_args.append(f"--stop_text_encoder_training={stop_text_encoder_training}")
if save_state == 1:
ext_args.append("--save_state")
if resume:
ext_args.append(f"--resume={resume}")
if min_snr_gamma != 0:
ext_args.append(f"--min_snr_gamma={min_snr_gamma}")
if persistent_data_loader_workers:
ext_args.append("--persistent_data_loader_workers")
if use_wandb == 1:
ext_args.append("--log_with=all")
if wandb_api_key:
ext_args.append(f"--wandb_api_key={wandb_api_key}")
if log_tracker_name:
ext_args.append(f"--log_tracker_name={log_tracker_name}")
else:
ext_args.append("--log_with=tensorboard")
launchargs=' '.join(launch_args)
extargs=' '.join(ext_args)
pretrained_model = folder_paths.get_full_path("checkpoints", ckpt_name)
#Looking for the training script.
progpath = os.getcwd()
nodespath=''
for dirpath, dirnames, filenames in os.walk(progpath):
if 'sd-scripts' in dirnames:
nodespath= dirpath + '/sd-scripts/train_network.py'
print(nodespath)
nodespath = nodespath.replace( "\\", "/")
command = "python -m accelerate.commands.launch " + launchargs + f'--num_cpu_threads_per_process=8 "{nodespath}" --enable_bucket --pretrained_model_name_or_path={pretrained_model} --train_data_dir="{train_data_dir}" --output_dir="{output_dir}" --logging_dir="./logs" --log_prefix={output_name} --resolution={resolution} --network_module={network_module} --max_train_epochs={max_train_epoches} --learning_rate={lr} --unet_lr={unet_lr} --text_encoder_lr={text_encoder_lr} --lr_scheduler={lr_scheduler} --lr_warmup_steps={lr_warmup_steps} --lr_scheduler_num_cycles={lr_restart_cycles} --network_dim={network_dim} --network_alpha={network_alpha} --output_name={output_name} --train_batch_size={batch_size} --save_every_n_epochs={save_every_n_epochs} --mixed_precision="fp16" --save_precision="fp16" --seed={theseed} --cache_latents --prior_loss_weight=1 --max_token_length=225 --caption_extension=".txt" --save_model_as={save_model_as} --min_bucket_reso={min_bucket_reso} --max_bucket_reso={max_bucket_reso} --keep_tokens={keep_tokens} --xformers --shuffle_caption ' + extargs
#print(command)
subprocess.run(command, shell=True)
print("Train finished")
#input()
return ()
class LoraTraininginComfyAdvanced:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
"v2": (["No", "Yes"], ),
"networkmodule": (["networks.lora", "lycoris.kohya"], ),
"networkdimension": ("INT", {"default": 32, "min":0}),
"networkalpha": ("INT", {"default":32, "min":0}),
"trainingresolution": ("INT", {"default":512, "step":8}),
"data_path": ("STRING", {"default": "Insert path of image folders"}),
"batch_size": ("INT", {"default": 1, "min":1}),
"max_train_epoches": ("INT", {"default":10, "min":1}),
"save_every_n_epochs": ("INT", {"default":10, "min":1}),
"keeptokens": ("INT", {"default":0, "min":0}),
"minSNRgamma": ("FLOAT", {"default":0, "min":0, "step":0.1}),
"learningrateText": ("FLOAT", {"default":0.0001, "min":0, "step":0.00001}),
"learningrateUnet": ("FLOAT", {"default":0.0001, "min":0, "step":0.00001}),
"learningRateScheduler": (["cosine_with_restarts", "linear", "cosine", "polynomial", "constant", "constant_with_warmup"], ),
"lrRestartCycles": ("INT", {"default":1, "min":1}),
"optimizerType": (["AdamW8bit", "Lion8bit", "SGDNesterov8bit", "AdaFactor", "prodigy"], ),
"output_name": ("STRING", {"default":'Desired name for LoRA.'}),
"algorithm": (["lora","loha","lokr","ia3","dylora", "locon"], ),
"networkDropout": ("FLOAT", {"default": 0, "step":0.1}),
"clip_skip": ("INT", {"default":2, "min":1}),
"output_dir": ("STRING", {"default":'models/loras'}),
},
}
RETURN_TYPES = ()
RETURN_NAMES = ()
FUNCTION = "loratraining"
OUTPUT_NODE = True
CATEGORY = "LJRE/LORA"
def loratraining(self, ckpt_name, v2, networkmodule, networkdimension, networkalpha, trainingresolution, data_path, batch_size, max_train_epoches, save_every_n_epochs, keeptokens, minSNRgamma, learningrateText, learningrateUnet, learningRateScheduler, lrRestartCycles, optimizerType, output_name, algorithm, networkDropout, clip_skip, output_dir):
#free memory first of all
loadedmodels=model_management.current_loaded_models
unloaded_model = False
for i in range(len(loadedmodels) -1, -1, -1):
m = loadedmodels.pop(i)
m.model_unload()
del m
unloaded_model = True
if unloaded_model:
model_management.soft_empty_cache()
#print(model_management.current_loaded_models)
#loadedmodel = model_management.LoadedModel()
#loadedmodel.model_unload(self, current_loaded_models)
#transform backslashes into slashes for user convenience.
train_data_dir = data_path.replace( "\\", "/")
#ADVANCED parameters initialization
is_v2_model=0
network_moduke="networks.lora"
network_dim=32
network_alpha=32
resolution = "512,512"
keep_tokens = 0
min_snr_gamma = 0
unet_lr = "1e-4"
text_encoder_lr = "1e-5"
lr_scheduler = "cosine_with_restarts"
lr_restart_cycles = 0
optimizer_type = "AdamW8bit"
algo= "lora"
dropout = 0.0
if v2 == "Yes":
is_v2_model = 1
network_module = networkmodule
network_dim = networkdimension
network_alpha = networkalpha
resolution = f"{trainingresolution},{trainingresolution}"
formatted_value = str(format(learningrateText, "e")).rstrip('0').rstrip()
text_encoder_lr = ''.join(c for c in formatted_value if not (c == '0'))
formatted_value2 = str(format(learningrateUnet, "e")).rstrip('0').rstrip()
unet_lr = ''.join(c for c in formatted_value2 if not (c == '0'))
keep_tokens = keeptokens
min_snr_gamma = minSNRgamma
lr_scheduler = learningRateScheduler
lr_restart_cycles = lrRestartCycles
optimizer_type = optimizerType
algo = algorithm
dropout = f"{networkDropout}"
#generates a random seed
theseed = random.randint(0, 2^32-1)
if multi_gpu:
launch_args.append("--multi_gpu")
if lowram:
ext_args.append("--lowram")
if is_v2_model:
ext_args.append("--v2")
else:
ext_args.append(f"--clip_skip={clip_skip}")
if parameterization:
ext_args.append("--v_parameterization")
if train_unet_only:
ext_args.append("--network_train_unet_only")
if train_text_encoder_only:
ext_args.append("--network_train_text_encoder_only")
if network_weights:
ext_args.append(f"--network_weights={network_weights}")
if reg_data_dir:
ext_args.append(f"--reg_data_dir={reg_data_dir}")
if optimizer_type:
ext_args.append(f"--optimizer_type={optimizer_type}")
if optimizer_type == "DAdaptation":
ext_args.append("--optimizer_args")
ext_args.append("decouple=True")
if network_module == "lycoris.kohya":
ext_args.extend([
f"--network_args",
f"conv_dim={conv_dim}",
f"conv_alpha={conv_alpha}",
f"algo={algo}",
f"dropout={dropout}"
])
if noise_offset != 0:
ext_args.append(f"--noise_offset={noise_offset}")
if stop_text_encoder_training != 0:
ext_args.append(f"--stop_text_encoder_training={stop_text_encoder_training}")
if save_state == 1:
ext_args.append("--save_state")
if resume:
ext_args.append(f"--resume={resume}")
if min_snr_gamma != 0:
ext_args.append(f"--min_snr_gamma={min_snr_gamma}")
if persistent_data_loader_workers:
ext_args.append("--persistent_data_loader_workers")
if use_wandb == 1:
ext_args.append("--log_with=all")
if wandb_api_key:
ext_args.append(f"--wandb_api_key={wandb_api_key}")
if log_tracker_name:
ext_args.append(f"--log_tracker_name={log_tracker_name}")
else:
ext_args.append("--log_with=tensorboard")
launchargs=' '.join(launch_args)
extargs=' '.join(ext_args)
pretrained_model = folder_paths.get_full_path("checkpoints", ckpt_name)
#Looking for the training script.
progpath = os.getcwd()
nodespath=''
for dirpath, dirnames, filenames in os.walk(progpath):
if 'sd-scripts' in dirnames:
nodespath= dirpath + '/sd-scripts/train_network.py'
print(nodespath)
nodespath = nodespath.replace( "\\", "/")
command = "python -m accelerate.commands.launch " + launchargs + f'--num_cpu_threads_per_process=8 "custom_nodes/Lora-Training-in-Comfy/sd-scripts/train_network.py" --enable_bucket --pretrained_model_name_or_path={pretrained_model} --train_data_dir="{train_data_dir}" --output_dir="{output_dir}" --logging_dir="./logs" --log_prefix={output_name} --resolution={resolution} --network_module={network_module} --max_train_epochs={max_train_epoches} --learning_rate={lr} --unet_lr={unet_lr} --text_encoder_lr={text_encoder_lr} --lr_scheduler={lr_scheduler} --lr_warmup_steps={lr_warmup_steps} --lr_scheduler_num_cycles={lr_restart_cycles} --network_dim={network_dim} --network_alpha={network_alpha} --output_name={output_name} --train_batch_size={batch_size} --save_every_n_epochs={save_every_n_epochs} --mixed_precision="fp16" --save_precision="fp16" --seed={theseed} --cache_latents --prior_loss_weight=1 --max_token_length=225 --caption_extension=".txt" --save_model_as={save_model_as} --min_bucket_reso={min_bucket_reso} --max_bucket_reso={max_bucket_reso} --keep_tokens={keep_tokens} --xformers --shuffle_caption ' + extargs
#print(command)
subprocess.run(command, shell=True)
print("Train finished")
#input()
return ()
class TensorboardAccess:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
},
}
RETURN_TYPES = ()
RETURN_NAMES = ()
FUNCTION = "opentensorboard"
OUTPUT_NODE = True
CATEGORY = "LJRE/LORA"
def opentensorboard(self):
command = 'tensorboard --logdir="logs"'
subprocess.Popen(command, shell=True)
return() |