File size: 9,043 Bytes
1e3b872 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import os,sys
import folder_paths
from PIL import Image
import importlib.util
import comfy.utils
import numpy as np
import json
import torch
import random
# from clip_interrogator import Config, Interrogator
global _available
_available=False
def is_installed(package):
try:
spec = importlib.util.find_spec(package)
except ModuleNotFoundError:
return False
return spec is not None
try:
if is_installed('clip_interrogator')==False:
import subprocess
# 安装
print('#pip install clip-interrogator==0.6.0')
result = subprocess.run([sys.executable, '-s', '-m', 'pip', 'install', 'clip-interrogator==0.6.0'], capture_output=True, text=True)
#检查命令执行结果
if result.returncode == 0:
print("#install success")
from clip_interrogator import Config, Interrogator
_available=True
else:
print("#install error")
else:
from clip_interrogator import Config, Interrogator
_available=True
except:
_available=False
try:
from transformers import AutoProcessor, BlipForConditionalGeneration
except:
_available=False
print('pls check transformers.__version__>=4.36.0:: AutoProcessor, BlipForConditionalGeneration')
def load_caption_model(model_path,config,t='blip-base'):
dtype=torch.float16 if config.device == 'cuda' else torch.float32
caption_model = BlipForConditionalGeneration.from_pretrained(model_path, torch_dtype=dtype)
caption_processor = AutoProcessor.from_pretrained(model_path)
caption_model.eval()
if not config.caption_offload:
caption_model = caption_model.to(config.device)
return (caption_model,caption_processor)
def get_clip_interrogator_path():
try:
return folder_paths.get_folder_paths('clip_interrogator')[0]
except:
return os.path.join(folder_paths.models_dir, "clip_interrogator")
cache_path=get_clip_interrogator_path()
caption_model_path=os.path.join(cache_path, "Salesforce/blip-image-captioning-base")
if not os.path.exists(caption_model_path):
print(f"## clip_interrogator_model not found: {caption_model_path}, pls download from https://huggingface.co/Salesforce/blip-image-captioning-base")
caption_model_path='Salesforce/blip-image-captioning-base'
# Tensor to PIL
def tensor2pil(image):
return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))
# Convert PIL to Tensor
def pil2tensor(image):
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)
def image_analysis_fn(ci,image):
image = image.convert('RGB')
image_features = ci.image_to_features(image)
top_mediums = ci.mediums.rank(image_features, 5)
top_artists = ci.artists.rank(image_features, 5)
top_movements = ci.movements.rank(image_features, 5)
top_trendings = ci.trendings.rank(image_features, 5)
top_flavors = ci.flavors.rank(image_features, 5)
medium_ranks = {medium: sim for medium, sim in zip(top_mediums, ci.similarities(image_features, top_mediums))}
artist_ranks = {artist: sim for artist, sim in zip(top_artists, ci.similarities(image_features, top_artists))}
movement_ranks = {movement: sim for movement, sim in zip(top_movements, ci.similarities(image_features, top_movements))}
trending_ranks = {trending: sim for trending, sim in zip(top_trendings, ci.similarities(image_features, top_trendings))}
flavor_ranks = {flavor: sim for flavor, sim in zip(top_flavors, ci.similarities(image_features, top_flavors))}
return {
"medium_ranks":medium_ranks,
"artist_ranks":artist_ranks,
"movement_ranks":movement_ranks,
"trending_ranks":trending_ranks,
"flavor_ranks":flavor_ranks
}
def generate_sentences(data):
sentences = []
# Get the length of data
data_length = len(data)
# Use a recursive function to handle variable-length data
def generate_recursive(index, current_sentence, current_score):
# Check if recursion is complete
if index == data_length:
sentences.append({"sentence": current_sentence, "score": current_score})
return
# Get the current level data
current_data = data[index]
# Iterate through the current level data
for phrase in current_data:
sentence = current_sentence + ("," if current_sentence.strip() else "") + phrase
score = current_score + current_data[phrase]
generate_recursive(index + 1, sentence, score)
# Start recursive generation of sentences
generate_recursive(0, "", 0)
# Sort the generated sentences by score in descending order
sentences.sort(key=lambda x: x["score"], reverse=True)
def get_random_elements(elements, num):
return random.sample(elements, num)
ps = get_random_elements(sentences, 5)
ps = [s["sentence"] for s in sorted(ps, key=lambda x: x["score"], reverse=True)]
return ps
def image_to_prompt(ci,image, mode):
ci.config.chunk_size = 2048 if ci.config.clip_model_name == "ViT-L-14/openai" else 1024
ci.config.flavor_intermediate_count = 2048 if ci.config.clip_model_name == "ViT-L-14/openai" else 1024
image = image.convert('RGB')
if mode == 'best':
return ci.interrogate(image)
elif mode == 'classic':
return ci.interrogate_classic(image)
elif mode == 'fast':
return ci.interrogate_fast(image)
elif mode == 'negative':
return ci.interrogate_negative(image)
# image = Image.open(image_path).convert('RGB')
# ci = Interrogator(Config(clip_model_name="ViT-L-14/openai"))
# print(ci.interrogate(image))
class ClipInterrogator:
global _available
available=_available
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image": ("IMAGE",),
"prompt_mode": (['fast','classic','best','negative'],),
"image_analysis": (["off","on"],),
},
# "optional":{
# "output":("CLIPINTERROGATOR", {"multiline": True,"default": "", "dynamicPrompts": False})
# },
}
RETURN_TYPES = ("STRING","STRING",)
RETURN_NAMES = ("prompt","random_samples",)
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Prompt"
OUTPUT_NODE = True
INPUT_IS_LIST = True
OUTPUT_IS_LIST = (True,True,)
global ci
ci = None
def run(self,image,prompt_mode,image_analysis):
global ci
prompt_mode=prompt_mode[0]
analysis=image_analysis[0]
prompt_result=[]
analysis_result=[]
# 进度条
pbar = comfy.utils.ProgressBar(len(image)*(2 if analysis=='on' else 1))
if ci==None:
config=Config(
clip_model_name="ViT-L-14/openai",
device="cuda" if torch.cuda.is_available() else "cpu",
download_cache=True,
clip_model_path=cache_path,
cache_path=cache_path
)
config.apply_low_vram_defaults()
caption_model,caption_processor=load_caption_model(caption_model_path,config)
config.caption_model= caption_model
config.caption_processor= caption_processor
ci = Interrogator(config)
# else:
# simple_lama.model.to("cuda" if torch.cuda.is_available() else "cpu")
for i in range(len(image)):
im=image[i]
im=tensor2pil(im)
im=im.convert('RGB')
if analysis=='on':
analysis_res=image_analysis_fn(ci,im)
analysis_result.append( analysis_res )
pbar.update(1)
prompt=image_to_prompt(ci,im,prompt_mode)
pbar.update(1)
prompt_result.append(prompt)
# result.save("inpainted.png")
if ci.config.clip_offload and not ci.clip_offloaded:
ci.clip_model = ci.clip_model.to('cpu')
ci.clip_offloaded = True
if ci.config.caption_offload and not ci.caption_offloaded:
ci.caption_model = ci.caption_model.to('cpu')
ci.caption_offloaded = True
# analysis_result=[]
# items = app.graph.getNodeById(31).widgets[2].value["items"]
random_samples=[]
for r in analysis_result:
random_sample = generate_sentences([r['medium_ranks'], r['artist_ranks'],r['movement_ranks'],r['trending_ranks'],r['flavor_ranks']])
for s in random_sample:
random_samples.append(s)
# print(len(random_samples))
# print('-----')
# print( random_samples)
return {
"ui":{
"prompt": prompt_result,
"analysis":analysis_result,
"random_samples":random_samples
},
"result": (prompt_result,random_samples,)} |