File size: 28,787 Bytes
1e3b872 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 |
import os,platform
import re,random,json
from PIL import Image
import numpy as np
# FONT_PATH= os.path.abspath(os.path.join(os.path.dirname(__file__),'../assets/王汉宗颜楷体繁.ttf'))
import folder_paths
import matplotlib.font_manager as fm
import torch
import importlib.util
def create_incrementing_list(min_value, max_value, step, count):
l1 = [int(min_value + i * step) for i in range(count) if min_value + i * step <= max_value]
l2 = [float(min_value + i * step) for i in range(count) if min_value + i * step <= max_value]
return (l1,l2)
def split_list(lst, chunk_size, transition_size):
result = []
for i in range(0, len(lst), chunk_size):
start = i - transition_size
end = i + chunk_size + transition_size
result.append(lst[max(start, 0):end])
return result
def recursive_search(directory, excluded_dir_names=None):
if not os.path.isdir(directory):
return [], {}
if excluded_dir_names is None:
excluded_dir_names = []
result = []
dirs = {directory: os.path.getmtime(directory)}
for dirpath, subdirs, filenames in os.walk(directory, followlinks=True, topdown=True):
subdirs[:] = [d for d in subdirs if d not in excluded_dir_names]
for file_name in filenames:
relative_path = os.path.relpath(os.path.join(dirpath, file_name), directory)
result.append(relative_path)
for d in subdirs:
path = os.path.join(dirpath, d)
dirs[path] = os.path.getmtime(path)
return result, dirs
def filter_files_extensions(files, extensions):
return sorted(list(filter(lambda a: os.path.splitext(a)[-1].lower() in extensions or len(extensions) == 0, files)))
def get_system_font_path():
ps=[]
system = platform.system()
if system == "Windows":
ps.append(os.path.join(os.environ["WINDIR"], "Fonts"))
elif system == "Darwin":
ps.append(os.path.join("/Library", "Fonts"))
elif system == "Linux":
ps.append(os.path.join("/usr", "share", "fonts"))
ps.append(os.path.join("/usr", "local", "share", "fonts"))
ps=[p for p in ps if os.path.exists(p)]
file_paths=[]
for f in ps:
result, dirs=recursive_search(f)
for r in result:
file_paths.append(r)
file_paths=filter_files_extensions(file_paths,[".otf", ".ttf"])
return file_paths
# import json
# import hashlib
# def get_json_hash(json_content):
# json_string = json.dumps(json_content, sort_keys=True)
# hash_object = hashlib.sha256(json_string.encode())
# hash_value = hash_object.hexdigest()
# return hash_value
def tensor2pil(image):
return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))
def create_temp_file(image):
output_dir = folder_paths.get_temp_directory()
(
full_output_folder,
filename,
counter,
subfolder,
_,
) = folder_paths.get_save_image_path('tmp', output_dir)
im=tensor2pil(image)
image_file = f"{filename}_{counter:05}.png"
image_path=os.path.join(full_output_folder, image_file)
im.save(image_path,compress_level=4)
return [{
"filename": image_file,
"subfolder": subfolder,
"type": "temp"
}]
def get_font_files(directory):
font_files = {}
# 从指定目录加载字体
for file in os.listdir(directory):
if file.endswith('.ttf') or file.endswith('.otf'):
font_name = os.path.splitext(file)[0]
font_path = os.path.join(directory, file)
font_files[font_name] = os.path.abspath(font_path)
# 尝试获取系统字体
try:
font_paths = get_system_font_path()
for file in font_paths:
try:
font_name = os.path.splitext(file)[0]
font_path = file
font_files[font_name] = os.path.abspath(font_path)
except Exception as e:
print(f"Error processing font {file}: {e}")
except Exception as e:
print(f"Error finding system fonts: {e}")
return font_files
r_directory = os.path.join(os.path.dirname(__file__), '../assets/')
font_files = get_font_files(r_directory)
# print(font_files)
def flatten_list(nested_list):
flat_list = []
for item in nested_list:
if isinstance(item, list):
flat_list.extend(flatten_list(item))
else:
if torch.is_tensor(item):
print('item.shape',item.shape)
for i in range(item.shape[0]):
flat_list.append(item[i:i + 1, ...])
else:
flat_list.append(item)
return flat_list
class ColorInput:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"color":("TCOLOR",),
},
}
RETURN_TYPES = ("STRING","INT","INT","INT","FLOAT",)
RETURN_NAMES = ("hex","r","g","b","a",)
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Color"
INPUT_IS_LIST = False
OUTPUT_IS_LIST = (False,False,False,False,False,)
def run(self,color):
h=color['hex']
r=color['r']
g=color['g']
b=color['b']
a=color['a']
return (h,r,g,b,a,)
class FontInput:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"font": (list(font_files.keys()),),
},
}
RETURN_TYPES = ("STRING",)
# RETURN_NAMES = ("WIDTH","HEIGHT","X","Y",)
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Input"
INPUT_IS_LIST = False
OUTPUT_IS_LIST = (False,)
def run(self,font):
return (font_files[font],)
class TextToNumber:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"text": ("STRING",{"multiline": False,"default": "1"}),
"random_number": (["enable", "disable"],),
"max_num":("INT", {
"default": 10,
"min":2, #Minimum value
"max": 10000000000, #Maximum value
"step": 1, #Slider's step
"display": "number" # Cosmetic only: display as "number" or "slider"
}),
},
"optional":{
"seed": (any_type, {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
}
}
RETURN_TYPES = ("INT",)
# RETURN_NAMES = ("WIDTH","HEIGHT","X","Y",)
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Text"
INPUT_IS_LIST = False
OUTPUT_IS_LIST = (False,)
def run(self,text,random_number,max_num,seed=0):
numbers = re.findall(r'\d+', text)
result=0
for n in numbers:
result = int(n)
# print(result)
if random_number=='enable' and result>0:
result= random.randint(1, max_num)
return {"ui": {"text": [text],"num":[result]}, "result": (result,)}
class FloatSlider:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"number":("FLOAT", {
"default": 0,
"min": 0, #Minimum value
"max": 0xffffffffffffffff, #Maximum value
"step": 0.001, #Slider's step
"display": "slider" # Cosmetic only: display as "number" or "slider"
}),
"min_value":("FLOAT", {
"default": 0,
"min": -0xffffffffffffffff,
"max": 0xffffffffffffffff,
"step": 0.001,
"display": "number"
}),
"max_value":("FLOAT", {
"default": 1,
"min": -0xffffffffffffffff,
"max": 0xffffffffffffffff,
"step": 0.001,
"display": "number"
}),
"step":("FLOAT", {
"default": 0.001,
"min": -0xffffffffffffffff,
"max": 0xffffffffffffffff,
"step": 0.001,
"display": "number"
}),
},
}
RETURN_TYPES = ("FLOAT",)
RETURN_NAMES = ('FLOAT',)
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Input"
INPUT_IS_LIST = False
OUTPUT_IS_LIST = (False,)
def run(self, number, min_value, max_value, step):
if number < min_value:
number = min_value
elif number > max_value:
number = max_value
return (number,)
class IntNumber:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"number":("INT", {
"default": 0,
"min": -1, #Minimum value
"max": 0xffffffffffffffff,
"step": 1,
"display": "number"
}),
"min_value":("INT", {
"default": 0,
"min": -0xffffffffffffffff,
"max": 0xffffffffffffffff,
"step": 1,
"display": "number"
}),
"max_value":("INT", {
"default": 1,
"min": -0xffffffffffffffff,
"max": 0xffffffffffffffff,
"step": 1,
"display": "number"
}),
"step":("INT", {
"default": 1,
"min": -0xffffffffffffffff,
"max": 0xffffffffffffffff,
"step":1,
"display": "number"
}),
},
}
RETURN_TYPES = ("INT",)
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Input"
INPUT_IS_LIST = False
OUTPUT_IS_LIST = (False,)
def run(self,number,min_value,max_value,step):
if number < min_value:
number= min_value
elif number > max_value:
number= max_value
return (number,)
class MultiplicationNode:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"numberA":(any_type,),
"multiply_by":("FLOAT", {
"default": 1,
"min": -2, #Minimum value
"max": 0xffffffffffffffff,
"step": 0.01, #Slider's step
"display": "number" # Cosmetic only: display as "number" or "slider"
}),
"add_by":("FLOAT", {
"default": 0,
"min": -2000, #Minimum value
"max": 0xffffffffffffffff,
"step": 0.01, #Slider's step
"display": "number" # Cosmetic only: display as "number" or "slider"
})
},
}
RETURN_TYPES = ("FLOAT","INT",)
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Utils"
INPUT_IS_LIST = False
OUTPUT_IS_LIST = (False,False,)
def run(self,numberA,multiply_by,add_by):
b=int(numberA*multiply_by+add_by)
a=float(numberA*multiply_by+add_by)
return (a,b,)
class TextInput:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"text": ("STRING",{"multiline": True,"default": ""})
},
}
RETURN_TYPES = ("STRING",)
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Input"
INPUT_IS_LIST = False
OUTPUT_IS_LIST = (False,)
def run(self,text):
return (text,)
class IncrementingListNode:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"min_value": ("FLOAT", {
"default": 0,
"min": -2000, #Minimum value
"max": 0xffffffffffffffff,
"step": 0.01, #Slider's step
"display": "number" # Cosmetic only: display as "number" or "slider"
}),
"max_value": ("FLOAT", {
"default": 10,
"min": -2000, #Minimum value
"max": 0xffffffffffffffff,
"step": 0.01, #Slider's step
"display": "number" # Cosmetic only: display as "number" or "slider"
}),
"step": ("FLOAT", {
"default": 0,
"min": -2000, #Minimum value
"max": 0xffffffffffffffff,
"step": 0.01, #Slider's step
"display": "number" # Cosmetic only: display as "number" or "slider"
}),
"count": ("INT", {
"default": 1,
"min": 1, #Minimum value
"max": 0xffffffffffffffff,
"step":1, #Slider's step
"display": "number" # Cosmetic only: display as "number" or "slider"
})
},
"optional":{
"seed":("INT", {"default": -1, "min": -1, "max": 1000000}),
},
}
RETURN_TYPES = ("INT","FLOAT",)
RETURN_NAMES = ('int_list','float_list',)
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Video"
INPUT_IS_LIST = False
OUTPUT_IS_LIST = (True,True,)
def run(self,min_value,max_value,step,count,seed):
print('create_incrementing_list',seed)
l1,l2=create_incrementing_list(min_value,max_value,step,count)
return (l1,l2,)
# 接收一个值,然后根据字符串或数值长度计算延迟时间,用户可以自定义延迟"字/s",延迟之后将转化
import comfy.samplers
import folder_paths
# import time
class AnyType(str):
"""A special class that is always equal in not equal comparisons. Credit to pythongosssss"""
def __ne__(self, __value: object) -> bool:
return False
any_type = AnyType("*")
import time
class DynamicDelayProcessor:
@classmethod
def INPUT_TYPES(cls):
# print("print INPUT_TYPES",cls)
return {
"required":{
"delay_seconds":("INT",{
"default":1,
"min": 0,
"max": 1000000,
}),
},
"optional":{
"any_input":(any_type,),
"delay_by_text":("STRING",{"multiline":True,"dynamicPrompts": False,}),
"words_per_seconds":("FLOAT",{ "default":1.50,"min": 0.0,"max": 1000.00,"display":"Chars per second?"}),
"replace_output": (["disable","enable"],),
"replace_value":("INT",{ "default":-1,"min": 0,"max": 1000000,"display":"Replacement value"})
}
}
@classmethod
def calculate_words_length(cls,text):
chinese_char_pattern = re.compile(r'[\u4e00-\u9fff]')
english_word_pattern = re.compile(r'\b[a-zA-Z]+\b')
number_pattern = re.compile(r'\b[0-9]+\b')
words_length = 0
for segment in text.split():
if chinese_char_pattern.search(segment):
# 中文字符,每个字符计为 1
words_length += len(segment)
elif number_pattern.match(segment):
# 数字,每个字符计为 1
words_length += len(segment)
elif english_word_pattern.match(segment):
# 英文单词,整个单词计为 1
words_length += 1
return words_length
FUNCTION = "run"
RETURN_TYPES = (any_type,)
RETURN_NAMES = ('output',)
CATEGORY = "♾️Mixlab/Utils"
def run(self,any_input,delay_seconds,delay_by_text,words_per_seconds,replace_output,replace_value):
# print(f"Delay text:",delay_by_text )
# 获取开始时间戳
start_time = time.time()
# 计算延迟时间
delay_time = delay_seconds
if delay_by_text and isinstance(delay_by_text, str) and words_per_seconds > 0:
words_length = self.calculate_words_length(delay_by_text)
print(f"Delay text: {delay_by_text}, Length: {words_length}")
delay_time += words_length / words_per_seconds
# 延迟执行
print(f"延迟执行: {delay_time}")
time.sleep(delay_time)
# 获取结束时间戳并计算间隔
end_time = time.time()
elapsed_time = end_time - start_time
print(f"实际延迟时间: {elapsed_time} 秒")
# 根据 replace_output 决定输出值
return (max(0, replace_value),) if replace_output == "enable" else (any_input,)
# app 配置节点
class AppInfo:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"name": ("STRING",{"multiline": False,"default": "Mixlab-App","dynamicPrompts": False}),
"input_ids":("STRING",{"multiline": True,"default": "\n".join(["1","2","3"]),"dynamicPrompts": False}),
"output_ids":("STRING",{"multiline": True,"default": "\n".join(["5","9"]),"dynamicPrompts": False}),
},
"optional":{
"image": ("IMAGE",),
"description":("STRING",{"multiline": True,"default": "","dynamicPrompts": False}),
"version":("INT", {
"default": 1,
"min": 1,
"max": 10000,
"step": 1,
"display": "number"
}),
"share_prefix":("STRING",{"multiline": False,"default": "","dynamicPrompts": False}),
"link":("STRING",{"multiline": False,"default": "https://","dynamicPrompts": False}),
"category":("STRING",{"multiline": False,"default": "","dynamicPrompts": False}),
"auto_save": (["enable","disable"],),
}
}
RETURN_TYPES = ()
# RETURN_NAMES = ("IMAGE",)
FUNCTION = "run"
CATEGORY = "♾️Mixlab"
OUTPUT_NODE = True
INPUT_IS_LIST = True
# OUTPUT_IS_LIST = (True,)
def run(self,name,input_ids,output_ids,image,description,version,share_prefix,link,category,auto_save):
name=name[0]
im=None
if image:
im=image[0][0]
#TODO batch 的方式需要处理
im=create_temp_file(im)
# image [img,] img[batch,w,h,a] 列表里面是batch,
input_ids=input_ids[0]
output_ids=output_ids[0]
description=description[0]
version=version[0]
share_prefix=share_prefix[0]
link=link[0]
category=category[0]
# id=get_json_hash([name,im,input_ids,output_ids,description,version])
return {"ui": {"json": [name,im,input_ids,output_ids,description,version,share_prefix,link,category]}, "result": ()}
class SwitchByIndex:
@classmethod
def INPUT_TYPES(cls):
return {
"optional":{
"A":(any_type,),
"B":(any_type,),
},
"required": {
"index":("INT", {
"default": -1,
"min": -1,
"max": 1000,
"step": 1,
"display": "number"
}),
"flat": (['off',"on"],),
}
}
RETURN_TYPES = (any_type,"INT",)
RETURN_NAMES = ("list", "count",)
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Utils"
INPUT_IS_LIST = True
OUTPUT_IS_LIST = (True, False,)
def run(self, A=[],B=[],index=-1,flat='on'):
flat=flat[0]
C=[]
index=index[0]
for a in A:
C.append(a)
for b in B:
C.append(b)
if flat=='on':
C=flatten_list(C)
if index>-1:
try:
C=[C[index]]
except Exception as e:
C=[C[-1]] #最后一个
return (C, len(C),)
class ListSplit:
@classmethod
def INPUT_TYPES(cls):
return {
"optional":{
"A":(any_type,),
},
"required": {
"chunk_size": ("INT", {"default": 10, "min": 1, "step": 1}),
"transition_size": ("INT", {"default": 0, "min": 0, "step": 1}),
"index": ("INT", {"default": -1, "min": -1, "step": 1}),
}
}
RETURN_TYPES = (any_type,)
RETURN_NAMES = ("B",)
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Utils"
INPUT_IS_LIST = True
OUTPUT_IS_LIST = (True,)
def run(self, A=[],chunk_size=[10],transition_size=[0],index=[-1]):
# print(len(A))
B=split_list(A,chunk_size[0],transition_size[0])
if index[0]>-1:
B=B[index[0]]
return (B,)
class LimitNumber:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"number":(any_type,),
"min_value":("INT", {
"default": 0,
"min": 0,
"max": 0xffffffffffffffff,
"step": 1,
"display": "number"
}),
"max_value":("INT", {
"default": 1,
"min": 1,
"max": 0xffffffffffffffff,
"step": 1,
"display": "number"
}),
}
}
RETURN_TYPES = (any_type,)
RETURN_NAMES = ("number",)
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Input"
INPUT_IS_LIST = False
OUTPUT_IS_LIST = (False,)
def run(self, number, min_value, max_value):
nn=number
if isinstance(number, int):
min_value=int(min_value)
max_value=int(max_value)
if isinstance(number, float):
min_value=float(min_value)
max_value=float(max_value)
if number < min_value:
nn= min_value
elif number > max_value:
nn= max_value
return (nn,)
class ListStatistics:
@staticmethod
def count_types(lst):
type_count = {}
for item in lst:
item_type = type(item).__name__
if item_type not in type_count:
type_count[item_type] = []
if item_type in ['dict', 'str', 'int', 'float']:
type_count[item_type].append(item)
return type_count
# # 示例列表
# my_list = [1, 'hello', {'name': 'John'}, 3.14, {'age': 25}, 'world', 10]
# # 创建ListStatistics对象
# list_stats = ListStatistics()
# # 调用count_types方法进行统计
# result = list_stats.count_types(my_list)
# # 输出结果
# for item_type, values in result.items():
# print(item_type + ':')
# for value in values:
# print(value)
# print('---')
class TESTNODE_:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"ANY":(any_type,),
},
}
RETURN_TYPES = (any_type,)
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Test"
OUTPUT_NODE = True
INPUT_IS_LIST = True
OUTPUT_IS_LIST = (True,)
def run(self,ANY):
print(type(ANY))
try:
print(ANY[0].shape)
img= tensor2pil(ANY[0])
print(img.size)
except:
print('')
# data=ANY
list_stats = ListStatistics()
# 调用count_types方法进行统计
result = list_stats.count_types(ANY)
# 假设我们有一个模块文件名为 my_module.py,它位于 'importables' 目录下
module_path = os.path.join(os.path.dirname(__file__),'test.py')
# 使用 spec_from_file_location 获取模块的元数据(名称、定义等)
spec = importlib.util.spec_from_file_location('test', module_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
functions = getattr(module, 'run') # 获取函数
functions(ANY)
return {"ui": {"data": result,"type":[str(type(ANY[0]))]}, "result": (ANY,)}
class TESTNODE_TOKEN:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"text":("STRING", {"forceInput": True,}),
"clip": ("CLIP", )
},
}
RETURN_TYPES = ("STRING",)
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Test"
OUTPUT_NODE = True
INPUT_IS_LIST = False
OUTPUT_IS_LIST = (False,)
def run(self,text,clip=None):
# print(text)
tokens = clip.tokenize(text)
tokens=[v for v in tokens.values()][0][0]
tokens=json.dumps(tokens)
return (tokens,)
class CreateSeedNode:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
}
}
RETURN_TYPES = ("INT",)
RETURN_NAMES = ("seed",)
OUTPUT_NODE = True
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Experiment"
def run(self, seed):
return (seed,)
class CreateCkptNames:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"ckpt_names": ("STRING",{"multiline": True,"default": "\n".join(folder_paths.get_filename_list("checkpoints")),"dynamicPrompts": False}),
}
}
RETURN_TYPES = (any_type,)
RETURN_NAMES = ("ckpt_names",)
INPUT_IS_LIST = False
OUTPUT_IS_LIST = (True,)
# OUTPUT_NODE = True
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Experiment"
def run(self, ckpt_names):
ckpt_names=ckpt_names.split('\n')
ckpt_names = [name for name in ckpt_names if name.strip()]
return (ckpt_names,)
class CreateLoraNames:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"lora_names": ("STRING",{"multiline": True,"default": "\n".join(folder_paths.get_filename_list("loras")),"dynamicPrompts": False}),
}
}
RETURN_TYPES = (any_type,"STRING",)
RETURN_NAMES = ("lora_names","prompt",)
INPUT_IS_LIST = False
OUTPUT_IS_LIST = (True,True,)
# OUTPUT_NODE = True
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Experiment"
def run(self, lora_names):
lora_names=lora_names.split('\n')
lora_names = [name for name in lora_names if name.strip()]
prompts=[os.path.splitext(n)[0] for n in lora_names]
return (lora_names,prompts,)
class CreateSampler_names:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"sampler_names": ("STRING",{"multiline": True,"default": "\n".join(comfy.samplers.KSampler.SAMPLERS),"dynamicPrompts": False}),
}
}
RETURN_TYPES = (any_type,)
RETURN_NAMES = ("sampler_names",)
INPUT_IS_LIST = False
OUTPUT_IS_LIST = (True,)
# OUTPUT_NODE = True
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Experiment"
def run(self, sampler_names):
sampler_names=sampler_names.split('\n')
sampler_names = [name for name in sampler_names if name.strip()]
return (sampler_names,) |