File size: 50,374 Bytes
1e3b872 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 |
import os, glob, sys
import logging
import torch
import torch.nn.functional as torchfn
from torchvision.transforms.functional import normalize
from torchvision.ops import masks_to_boxes
import numpy as np
import cv2
import math
from typing import List
from PIL import Image
from scipy import stats
from insightface.app.common import Face
from segment_anything import sam_model_registry
from modules.processing import StableDiffusionProcessingImg2Img
from modules.shared import state
# from comfy_extras.chainner_models import model_loading
import comfy.model_management as model_management
import comfy.utils
import folder_paths
import scripts.reactor_version
from r_chainner import model_loading
from scripts.reactor_faceswap import (
FaceSwapScript,
get_models,
get_current_faces_model,
analyze_faces,
half_det_size,
providers
)
from scripts.reactor_logger import logger
from reactor_utils import (
batch_tensor_to_pil,
batched_pil_to_tensor,
tensor_to_pil,
img2tensor,
tensor2img,
save_face_model,
load_face_model,
download,
set_ort_session,
prepare_cropped_face,
normalize_cropped_face,
add_folder_path_and_extensions,
rgba2rgb_tensor
)
from reactor_patcher import apply_patch
from r_facelib.utils.face_restoration_helper import FaceRestoreHelper
from r_basicsr.utils.registry import ARCH_REGISTRY
import scripts.r_archs.codeformer_arch
import scripts.r_masking.subcore as subcore
import scripts.r_masking.core as core
import scripts.r_masking.segs as masking_segs
models_dir = folder_paths.models_dir
REACTOR_MODELS_PATH = os.path.join(models_dir, "reactor")
FACE_MODELS_PATH = os.path.join(REACTOR_MODELS_PATH, "faces")
if not os.path.exists(REACTOR_MODELS_PATH):
os.makedirs(REACTOR_MODELS_PATH)
if not os.path.exists(FACE_MODELS_PATH):
os.makedirs(FACE_MODELS_PATH)
dir_facerestore_models = os.path.join(models_dir, "facerestore_models")
os.makedirs(dir_facerestore_models, exist_ok=True)
folder_paths.folder_names_and_paths["facerestore_models"] = ([dir_facerestore_models], folder_paths.supported_pt_extensions)
BLENDED_FACE_MODEL = None
FACE_SIZE: int = 512
FACE_HELPER = None
if "ultralytics" not in folder_paths.folder_names_and_paths:
add_folder_path_and_extensions("ultralytics_bbox", [os.path.join(models_dir, "ultralytics", "bbox")], folder_paths.supported_pt_extensions)
add_folder_path_and_extensions("ultralytics_segm", [os.path.join(models_dir, "ultralytics", "segm")], folder_paths.supported_pt_extensions)
add_folder_path_and_extensions("ultralytics", [os.path.join(models_dir, "ultralytics")], folder_paths.supported_pt_extensions)
if "sams" not in folder_paths.folder_names_and_paths:
add_folder_path_and_extensions("sams", [os.path.join(models_dir, "sams")], folder_paths.supported_pt_extensions)
def get_facemodels():
models_path = os.path.join(FACE_MODELS_PATH, "*")
models = glob.glob(models_path)
models = [x for x in models if x.endswith(".safetensors")]
return models
def get_restorers():
models_path = os.path.join(models_dir, "facerestore_models/*")
models = glob.glob(models_path)
models = [x for x in models if (x.endswith(".pth") or x.endswith(".onnx"))]
if len(models) == 0:
fr_urls = [
"https://huggingface.co/datasets/Gourieff/ReActor/resolve/main/models/facerestore_models/GFPGANv1.3.pth",
"https://huggingface.co/datasets/Gourieff/ReActor/resolve/main/models/facerestore_models/GFPGANv1.4.pth",
"https://huggingface.co/datasets/Gourieff/ReActor/resolve/main/models/facerestore_models/codeformer-v0.1.0.pth",
"https://huggingface.co/datasets/Gourieff/ReActor/resolve/main/models/facerestore_models/GPEN-BFR-512.onnx",
"https://huggingface.co/datasets/Gourieff/ReActor/resolve/main/models/facerestore_models/GPEN-BFR-1024.onnx",
"https://huggingface.co/datasets/Gourieff/ReActor/resolve/main/models/facerestore_models/GPEN-BFR-2048.onnx",
]
for model_url in fr_urls:
model_name = os.path.basename(model_url)
model_path = os.path.join(dir_facerestore_models, model_name)
download(model_url, model_path, model_name)
models = glob.glob(models_path)
models = [x for x in models if (x.endswith(".pth") or x.endswith(".onnx"))]
return models
def get_model_names(get_models):
models = get_models()
names = []
for x in models:
names.append(os.path.basename(x))
names.sort(key=str.lower)
names.insert(0, "none")
return names
def model_names():
models = get_models()
return {os.path.basename(x): x for x in models}
class reactor:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"enabled": ("BOOLEAN", {"default": True, "label_off": "OFF", "label_on": "ON"}),
"input_image": ("IMAGE",),
"swap_model": (list(model_names().keys()),),
"facedetection": (["retinaface_resnet50", "retinaface_mobile0.25", "YOLOv5l", "YOLOv5n"],),
"face_restore_model": (get_model_names(get_restorers),),
"face_restore_visibility": ("FLOAT", {"default": 1, "min": 0.1, "max": 1, "step": 0.05}),
"codeformer_weight": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1, "step": 0.05}),
"detect_gender_input": (["no","female","male"], {"default": "no"}),
"detect_gender_source": (["no","female","male"], {"default": "no"}),
"input_faces_index": ("STRING", {"default": "0"}),
"source_faces_index": ("STRING", {"default": "0"}),
"console_log_level": ([0, 1, 2], {"default": 1}),
},
"optional": {
"source_image": ("IMAGE",),
"face_model": ("FACE_MODEL",),
"face_boost": ("FACE_BOOST",),
},
"hidden": {"faces_order": "FACES_ORDER"},
}
RETURN_TYPES = ("IMAGE","FACE_MODEL")
FUNCTION = "execute"
CATEGORY = "π ReActor"
def __init__(self):
# self.face_helper = None
self.faces_order = ["large-small", "large-small"]
# self.face_size = FACE_SIZE
self.face_boost_enabled = False
self.restore = True
self.boost_model = None
self.interpolation = "Bicubic"
self.boost_model_visibility = 1
self.boost_cf_weight = 0.5
def restore_face(
self,
input_image,
face_restore_model,
face_restore_visibility,
codeformer_weight,
facedetection,
):
result = input_image
if face_restore_model != "none" and not model_management.processing_interrupted():
global FACE_SIZE, FACE_HELPER
self.face_helper = FACE_HELPER
faceSize = 512
if "1024" in face_restore_model.lower():
faceSize = 1024
elif "2048" in face_restore_model.lower():
faceSize = 2048
logger.status(f"Restoring with {face_restore_model} | Face Size is set to {faceSize}")
model_path = folder_paths.get_full_path("facerestore_models", face_restore_model)
device = model_management.get_torch_device()
if "codeformer" in face_restore_model.lower():
codeformer_net = ARCH_REGISTRY.get("CodeFormer")(
dim_embd=512,
codebook_size=1024,
n_head=8,
n_layers=9,
connect_list=["32", "64", "128", "256"],
).to(device)
checkpoint = torch.load(model_path)["params_ema"]
codeformer_net.load_state_dict(checkpoint)
facerestore_model = codeformer_net.eval()
elif ".onnx" in face_restore_model:
ort_session = set_ort_session(model_path, providers=providers)
ort_session_inputs = {}
facerestore_model = ort_session
else:
sd = comfy.utils.load_torch_file(model_path, safe_load=True)
facerestore_model = model_loading.load_state_dict(sd).eval()
facerestore_model.to(device)
if faceSize != FACE_SIZE or self.face_helper is None:
self.face_helper = FaceRestoreHelper(1, face_size=faceSize, crop_ratio=(1, 1), det_model=facedetection, save_ext='png', use_parse=True, device=device)
FACE_SIZE = faceSize
FACE_HELPER = self.face_helper
image_np = 255. * result.numpy()
total_images = image_np.shape[0]
out_images = []
for i in range(total_images):
if total_images > 1:
logger.status(f"Restoring {i+1}")
cur_image_np = image_np[i,:, :, ::-1]
original_resolution = cur_image_np.shape[0:2]
if facerestore_model is None or self.face_helper is None:
return result
self.face_helper.clean_all()
self.face_helper.read_image(cur_image_np)
self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5)
self.face_helper.align_warp_face()
restored_face = None
for idx, cropped_face in enumerate(self.face_helper.cropped_faces):
# if ".pth" in face_restore_model:
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
try:
with torch.no_grad():
if ".onnx" in face_restore_model: # ONNX models
for ort_session_input in ort_session.get_inputs():
if ort_session_input.name == "input":
cropped_face_prep = prepare_cropped_face(cropped_face)
ort_session_inputs[ort_session_input.name] = cropped_face_prep
if ort_session_input.name == "weight":
weight = np.array([ 1 ], dtype = np.double)
ort_session_inputs[ort_session_input.name] = weight
output = ort_session.run(None, ort_session_inputs)[0][0]
restored_face = normalize_cropped_face(output)
else: # PTH models
output = facerestore_model(cropped_face_t, w=codeformer_weight)[0] if "codeformer" in face_restore_model.lower() else facerestore_model(cropped_face_t)[0]
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
del output
torch.cuda.empty_cache()
except Exception as error:
print(f"\tFailed inference: {error}", file=sys.stderr)
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
if face_restore_visibility < 1:
restored_face = cropped_face * (1 - face_restore_visibility) + restored_face * face_restore_visibility
restored_face = restored_face.astype("uint8")
self.face_helper.add_restored_face(restored_face)
self.face_helper.get_inverse_affine(None)
restored_img = self.face_helper.paste_faces_to_input_image()
restored_img = restored_img[:, :, ::-1]
if original_resolution != restored_img.shape[0:2]:
restored_img = cv2.resize(restored_img, (0, 0), fx=original_resolution[1]/restored_img.shape[1], fy=original_resolution[0]/restored_img.shape[0], interpolation=cv2.INTER_AREA)
self.face_helper.clean_all()
# out_images[i] = restored_img
out_images.append(restored_img)
if state.interrupted or model_management.processing_interrupted():
logger.status("Interrupted by User")
return input_image
restored_img_np = np.array(out_images).astype(np.float32) / 255.0
restored_img_tensor = torch.from_numpy(restored_img_np)
result = restored_img_tensor
return result
def execute(self, enabled, input_image, swap_model, detect_gender_source, detect_gender_input, source_faces_index, input_faces_index, console_log_level, face_restore_model,face_restore_visibility, codeformer_weight, facedetection, source_image=None, face_model=None, faces_order=None, face_boost=None):
if face_boost is not None:
self.face_boost_enabled = face_boost["enabled"]
self.boost_model = face_boost["boost_model"]
self.interpolation = face_boost["interpolation"]
self.boost_model_visibility = face_boost["visibility"]
self.boost_cf_weight = face_boost["codeformer_weight"]
self.restore = face_boost["restore_with_main_after"]
else:
self.face_boost_enabled = False
if faces_order is None:
faces_order = self.faces_order
apply_patch(console_log_level)
if not enabled:
return (input_image,face_model)
elif source_image is None and face_model is None:
logger.error("Please provide 'source_image' or `face_model`")
return (input_image,face_model)
if face_model == "none":
face_model = None
script = FaceSwapScript()
pil_images = batch_tensor_to_pil(input_image)
if source_image is not None:
source = tensor_to_pil(source_image)
else:
source = None
p = StableDiffusionProcessingImg2Img(pil_images)
script.process(
p=p,
img=source,
enable=True,
source_faces_index=source_faces_index,
faces_index=input_faces_index,
model=swap_model,
swap_in_source=True,
swap_in_generated=True,
gender_source=detect_gender_source,
gender_target=detect_gender_input,
face_model=face_model,
faces_order=faces_order,
# face boost:
face_boost_enabled=self.face_boost_enabled,
face_restore_model=self.boost_model,
face_restore_visibility=self.boost_model_visibility,
codeformer_weight=self.boost_cf_weight,
interpolation=self.interpolation,
)
result = batched_pil_to_tensor(p.init_images)
if face_model is None:
current_face_model = get_current_faces_model()
face_model_to_provide = current_face_model[0] if (current_face_model is not None and len(current_face_model) > 0) else face_model
else:
face_model_to_provide = face_model
if self.restore or not self.face_boost_enabled:
result = reactor.restore_face(self,result,face_restore_model,face_restore_visibility,codeformer_weight,facedetection)
return (result,face_model_to_provide)
class ReActorPlusOpt:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"enabled": ("BOOLEAN", {"default": True, "label_off": "OFF", "label_on": "ON"}),
"input_image": ("IMAGE",),
"swap_model": (list(model_names().keys()),),
"facedetection": (["retinaface_resnet50", "retinaface_mobile0.25", "YOLOv5l", "YOLOv5n"],),
"face_restore_model": (get_model_names(get_restorers),),
"face_restore_visibility": ("FLOAT", {"default": 1, "min": 0.1, "max": 1, "step": 0.05}),
"codeformer_weight": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1, "step": 0.05}),
},
"optional": {
"source_image": ("IMAGE",),
"face_model": ("FACE_MODEL",),
"options": ("OPTIONS",),
"face_boost": ("FACE_BOOST",),
}
}
RETURN_TYPES = ("IMAGE","FACE_MODEL")
FUNCTION = "execute"
CATEGORY = "π ReActor"
def __init__(self):
# self.face_helper = None
self.faces_order = ["large-small", "large-small"]
self.detect_gender_input = "no"
self.detect_gender_source = "no"
self.input_faces_index = "0"
self.source_faces_index = "0"
self.console_log_level = 1
# self.face_size = 512
self.face_boost_enabled = False
self.restore = True
self.boost_model = None
self.interpolation = "Bicubic"
self.boost_model_visibility = 1
self.boost_cf_weight = 0.5
def execute(self, enabled, input_image, swap_model, facedetection, face_restore_model, face_restore_visibility, codeformer_weight, source_image=None, face_model=None, options=None, face_boost=None):
if options is not None:
self.faces_order = [options["input_faces_order"], options["source_faces_order"]]
self.console_log_level = options["console_log_level"]
self.detect_gender_input = options["detect_gender_input"]
self.detect_gender_source = options["detect_gender_source"]
self.input_faces_index = options["input_faces_index"]
self.source_faces_index = options["source_faces_index"]
if face_boost is not None:
self.face_boost_enabled = face_boost["enabled"]
self.restore = face_boost["restore_with_main_after"]
else:
self.face_boost_enabled = False
result = reactor.execute(
self,enabled,input_image,swap_model,self.detect_gender_source,self.detect_gender_input,self.source_faces_index,self.input_faces_index,self.console_log_level,face_restore_model,face_restore_visibility,codeformer_weight,facedetection,source_image,face_model,self.faces_order, face_boost=face_boost
)
return result
class LoadFaceModel:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"face_model": (get_model_names(get_facemodels),),
}
}
RETURN_TYPES = ("FACE_MODEL",)
FUNCTION = "load_model"
CATEGORY = "π ReActor"
def load_model(self, face_model):
self.face_model = face_model
self.face_models_path = FACE_MODELS_PATH
if self.face_model != "none":
face_model_path = os.path.join(self.face_models_path, self.face_model)
out = load_face_model(face_model_path)
else:
out = None
return (out, )
class BuildFaceModel:
def __init__(self):
self.output_dir = FACE_MODELS_PATH
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"save_mode": ("BOOLEAN", {"default": True, "label_off": "OFF", "label_on": "ON"}),
"send_only": ("BOOLEAN", {"default": False, "label_off": "NO", "label_on": "YES"}),
"face_model_name": ("STRING", {"default": "default"}),
"compute_method": (["Mean", "Median", "Mode"], {"default": "Mean"}),
},
"optional": {
"images": ("IMAGE",),
"face_models": ("FACE_MODEL",),
}
}
RETURN_TYPES = ("FACE_MODEL",)
FUNCTION = "blend_faces"
OUTPUT_NODE = True
CATEGORY = "π ReActor"
def build_face_model(self, image: Image.Image, det_size=(640, 640)):
logging.StreamHandler.terminator = "\n"
if image is None:
error_msg = "Please load an Image"
logger.error(error_msg)
return error_msg
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
face_model = analyze_faces(image, det_size)
if len(face_model) == 0:
print("")
det_size_half = half_det_size(det_size)
face_model = analyze_faces(image, det_size_half)
if face_model is not None and len(face_model) > 0:
print("...........................................................", end=" ")
if face_model is not None and len(face_model) > 0:
return face_model[0]
else:
no_face_msg = "No face found, please try another image"
# logger.error(no_face_msg)
return no_face_msg
def blend_faces(self, save_mode, send_only, face_model_name, compute_method, images=None, face_models=None):
global BLENDED_FACE_MODEL
blended_face: Face = BLENDED_FACE_MODEL
if send_only and blended_face is None:
send_only = False
if (images is not None or face_models is not None) and not send_only:
faces = []
embeddings = []
apply_patch(1)
if images is not None:
images_list: List[Image.Image] = batch_tensor_to_pil(images)
n = len(images_list)
for i,image in enumerate(images_list):
logging.StreamHandler.terminator = " "
logger.status(f"Building Face Model {i+1} of {n}...")
face = self.build_face_model(image)
if isinstance(face, str):
logger.error(f"No faces found in image {i+1}, skipping")
continue
else:
print(f"{int(((i+1)/n)*100)}%")
faces.append(face)
embeddings.append(face.embedding)
elif face_models is not None:
n = len(face_models)
for i,face_model in enumerate(face_models):
logging.StreamHandler.terminator = " "
logger.status(f"Extracting Face Model {i+1} of {n}...")
face = face_model
if isinstance(face, str):
logger.error(f"No faces found for face_model {i+1}, skipping")
continue
else:
print(f"{int(((i+1)/n)*100)}%")
faces.append(face)
embeddings.append(face.embedding)
logging.StreamHandler.terminator = "\n"
if len(faces) > 0:
# compute_method_name = "Mean" if compute_method == 0 else "Median" if compute_method == 1 else "Mode"
logger.status(f"Blending with Compute Method '{compute_method}'...")
blended_embedding = np.mean(embeddings, axis=0) if compute_method == "Mean" else np.median(embeddings, axis=0) if compute_method == "Median" else stats.mode(embeddings, axis=0)[0].astype(np.float32)
blended_face = Face(
bbox=faces[0].bbox,
kps=faces[0].kps,
det_score=faces[0].det_score,
landmark_3d_68=faces[0].landmark_3d_68,
pose=faces[0].pose,
landmark_2d_106=faces[0].landmark_2d_106,
embedding=blended_embedding,
gender=faces[0].gender,
age=faces[0].age
)
if blended_face is not None:
BLENDED_FACE_MODEL = blended_face
if save_mode:
face_model_path = os.path.join(FACE_MODELS_PATH, face_model_name + ".safetensors")
save_face_model(blended_face,face_model_path)
# done_msg = f"Face model has been saved to '{face_model_path}'"
# logger.status(done_msg)
logger.status("--Done!--")
# return (blended_face,)
else:
no_face_msg = "Something went wrong, please try another set of images"
logger.error(no_face_msg)
# return (blended_face,)
# logger.status("--Done!--")
if images is None and face_models is None:
logger.error("Please provide `images` or `face_models`")
return (blended_face,)
class SaveFaceModel:
def __init__(self):
self.output_dir = FACE_MODELS_PATH
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"save_mode": ("BOOLEAN", {"default": True, "label_off": "OFF", "label_on": "ON"}),
"face_model_name": ("STRING", {"default": "default"}),
"select_face_index": ("INT", {"default": 0, "min": 0}),
},
"optional": {
"image": ("IMAGE",),
"face_model": ("FACE_MODEL",),
}
}
RETURN_TYPES = ()
FUNCTION = "save_model"
OUTPUT_NODE = True
CATEGORY = "π ReActor"
def save_model(self, save_mode, face_model_name, select_face_index, image=None, face_model=None, det_size=(640, 640)):
if save_mode and image is not None:
source = tensor_to_pil(image)
source = cv2.cvtColor(np.array(source), cv2.COLOR_RGB2BGR)
apply_patch(1)
logger.status("Building Face Model...")
face_model_raw = analyze_faces(source, det_size)
if len(face_model_raw) == 0:
det_size_half = half_det_size(det_size)
face_model_raw = analyze_faces(source, det_size_half)
try:
face_model = face_model_raw[select_face_index]
except:
logger.error("No face(s) found")
return face_model_name
logger.status("--Done!--")
if save_mode and (face_model != "none" or face_model is not None):
face_model_path = os.path.join(self.output_dir, face_model_name + ".safetensors")
save_face_model(face_model,face_model_path)
if image is None and face_model is None:
logger.error("Please provide `face_model` or `image`")
return face_model_name
class RestoreFace:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"facedetection": (["retinaface_resnet50", "retinaface_mobile0.25", "YOLOv5l", "YOLOv5n"],),
"model": (get_model_names(get_restorers),),
"visibility": ("FLOAT", {"default": 1, "min": 0.0, "max": 1, "step": 0.05}),
"codeformer_weight": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1, "step": 0.05}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "π ReActor"
# def __init__(self):
# self.face_helper = None
# self.face_size = 512
def execute(self, image, model, visibility, codeformer_weight, facedetection):
result = reactor.restore_face(self,image,model,visibility,codeformer_weight,facedetection)
return (result,)
class MaskHelper:
def __init__(self):
# self.threshold = 0.5
# self.dilation = 10
# self.crop_factor = 3.0
# self.drop_size = 1
self.labels = "all"
self.detailer_hook = None
self.device_mode = "AUTO"
self.detection_hint = "center-1"
# self.sam_dilation = 0
# self.sam_threshold = 0.93
# self.bbox_expansion = 0
# self.mask_hint_threshold = 0.7
# self.mask_hint_use_negative = "False"
# self.force_resize_width = 0
# self.force_resize_height = 0
# self.resize_behavior = "source_size"
@classmethod
def INPUT_TYPES(s):
bboxs = ["bbox/"+x for x in folder_paths.get_filename_list("ultralytics_bbox")]
segms = ["segm/"+x for x in folder_paths.get_filename_list("ultralytics_segm")]
sam_models = [x for x in folder_paths.get_filename_list("sams") if 'hq' not in x]
return {
"required": {
"image": ("IMAGE",),
"swapped_image": ("IMAGE",),
"bbox_model_name": (bboxs + segms, ),
"bbox_threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"bbox_dilation": ("INT", {"default": 10, "min": -512, "max": 512, "step": 1}),
"bbox_crop_factor": ("FLOAT", {"default": 3.0, "min": 1.0, "max": 100, "step": 0.1}),
"bbox_drop_size": ("INT", {"min": 1, "max": 8192, "step": 1, "default": 10}),
"sam_model_name": (sam_models, ),
"sam_dilation": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}),
"sam_threshold": ("FLOAT", {"default": 0.93, "min": 0.0, "max": 1.0, "step": 0.01}),
"bbox_expansion": ("INT", {"default": 0, "min": 0, "max": 1000, "step": 1}),
"mask_hint_threshold": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
"mask_hint_use_negative": (["False", "Small", "Outter"], ),
"morphology_operation": (["dilate", "erode", "open", "close"],),
"morphology_distance": ("INT", {"default": 0, "min": 0, "max": 128, "step": 1}),
"blur_radius": ("INT", {"default": 9, "min": 0, "max": 48, "step": 1}),
"sigma_factor": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 3., "step": 0.01}),
},
"optional": {
"mask_optional": ("MASK",),
}
}
RETURN_TYPES = ("IMAGE","MASK","IMAGE","IMAGE")
RETURN_NAMES = ("IMAGE","MASK","MASK_PREVIEW","SWAPPED_FACE")
FUNCTION = "execute"
CATEGORY = "π ReActor"
def execute(self, image, swapped_image, bbox_model_name, bbox_threshold, bbox_dilation, bbox_crop_factor, bbox_drop_size, sam_model_name, sam_dilation, sam_threshold, bbox_expansion, mask_hint_threshold, mask_hint_use_negative, morphology_operation, morphology_distance, blur_radius, sigma_factor, mask_optional=None):
# images = [image[i:i + 1, ...] for i in range(image.shape[0])]
images = image
if mask_optional is None:
bbox_model_path = folder_paths.get_full_path("ultralytics", bbox_model_name)
bbox_model = subcore.load_yolo(bbox_model_path)
bbox_detector = subcore.UltraBBoxDetector(bbox_model)
segs = bbox_detector.detect(images, bbox_threshold, bbox_dilation, bbox_crop_factor, bbox_drop_size, self.detailer_hook)
if isinstance(self.labels, list):
self.labels = str(self.labels[0])
if self.labels is not None and self.labels != '':
self.labels = self.labels.split(',')
if len(self.labels) > 0:
segs, _ = masking_segs.filter(segs, self.labels)
# segs, _ = masking_segs.filter(segs, "all")
sam_modelname = folder_paths.get_full_path("sams", sam_model_name)
if 'vit_h' in sam_model_name:
model_kind = 'vit_h'
elif 'vit_l' in sam_model_name:
model_kind = 'vit_l'
else:
model_kind = 'vit_b'
sam = sam_model_registry[model_kind](checkpoint=sam_modelname)
size = os.path.getsize(sam_modelname)
sam.safe_to = core.SafeToGPU(size)
device = model_management.get_torch_device()
sam.safe_to.to_device(sam, device)
sam.is_auto_mode = self.device_mode == "AUTO"
combined_mask, _ = core.make_sam_mask_segmented(sam, segs, images, self.detection_hint, sam_dilation, sam_threshold, bbox_expansion, mask_hint_threshold, mask_hint_use_negative)
else:
combined_mask = mask_optional
# *** MASK TO IMAGE ***:
mask_image = combined_mask.reshape((-1, 1, combined_mask.shape[-2], combined_mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3)
# *** MASK MORPH ***:
mask_image = core.tensor2mask(mask_image)
if morphology_operation == "dilate":
mask_image = self.dilate(mask_image, morphology_distance)
elif morphology_operation == "erode":
mask_image = self.erode(mask_image, morphology_distance)
elif morphology_operation == "open":
mask_image = self.erode(mask_image, morphology_distance)
mask_image = self.dilate(mask_image, morphology_distance)
elif morphology_operation == "close":
mask_image = self.dilate(mask_image, morphology_distance)
mask_image = self.erode(mask_image, morphology_distance)
# *** MASK BLUR ***:
if len(mask_image.size()) == 3:
mask_image = mask_image.unsqueeze(3)
mask_image = mask_image.permute(0, 3, 1, 2)
kernel_size = blur_radius * 2 + 1
sigma = sigma_factor * (0.6 * blur_radius - 0.3)
mask_image_final = self.gaussian_blur(mask_image, kernel_size, sigma).permute(0, 2, 3, 1)
if mask_image_final.size()[3] == 1:
mask_image_final = mask_image_final[:, :, :, 0]
# *** CUT BY MASK ***:
if len(swapped_image.shape) < 4:
C = 1
else:
C = swapped_image.shape[3]
# We operate on RGBA to keep the code clean and then convert back after
swapped_image = core.tensor2rgba(swapped_image)
mask = core.tensor2mask(mask_image_final)
# Scale the mask to be a matching size if it isn't
B, H, W, _ = swapped_image.shape
mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(H, W), mode='nearest')[:,0,:,:]
MB, _, _ = mask.shape
if MB < B:
assert(B % MB == 0)
mask = mask.repeat(B // MB, 1, 1)
# masks_to_boxes errors if the tensor is all zeros, so we'll add a single pixel and zero it out at the end
is_empty = ~torch.gt(torch.max(torch.reshape(mask,[MB, H * W]), dim=1).values, 0.)
mask[is_empty,0,0] = 1.
boxes = masks_to_boxes(mask)
mask[is_empty,0,0] = 0.
min_x = boxes[:,0]
min_y = boxes[:,1]
max_x = boxes[:,2]
max_y = boxes[:,3]
width = max_x - min_x + 1
height = max_y - min_y + 1
use_width = int(torch.max(width).item())
use_height = int(torch.max(height).item())
# if self.force_resize_width > 0:
# use_width = self.force_resize_width
# if self.force_resize_height > 0:
# use_height = self.force_resize_height
alpha_mask = torch.ones((B, H, W, 4))
alpha_mask[:,:,:,3] = mask
swapped_image = swapped_image * alpha_mask
cutted_image = torch.zeros((B, use_height, use_width, 4))
for i in range(0, B):
if not is_empty[i]:
ymin = int(min_y[i].item())
ymax = int(max_y[i].item())
xmin = int(min_x[i].item())
xmax = int(max_x[i].item())
single = (swapped_image[i, ymin:ymax+1, xmin:xmax+1,:]).unsqueeze(0)
resized = torch.nn.functional.interpolate(single.permute(0, 3, 1, 2), size=(use_height, use_width), mode='bicubic').permute(0, 2, 3, 1)
cutted_image[i] = resized[0]
# Preserve our type unless we were previously RGB and added non-opaque alpha due to the mask size
if C == 1:
cutted_image = core.tensor2mask(cutted_image)
elif C == 3 and torch.min(cutted_image[:,:,:,3]) == 1:
cutted_image = core.tensor2rgb(cutted_image)
# *** PASTE BY MASK ***:
image_base = core.tensor2rgba(images)
image_to_paste = core.tensor2rgba(cutted_image)
mask = core.tensor2mask(mask_image_final)
# Scale the mask to be a matching size if it isn't
B, H, W, C = image_base.shape
MB = mask.shape[0]
PB = image_to_paste.shape[0]
if B < PB:
assert(PB % B == 0)
image_base = image_base.repeat(PB // B, 1, 1, 1)
B, H, W, C = image_base.shape
if MB < B:
assert(B % MB == 0)
mask = mask.repeat(B // MB, 1, 1)
elif B < MB:
assert(MB % B == 0)
image_base = image_base.repeat(MB // B, 1, 1, 1)
if PB < B:
assert(B % PB == 0)
image_to_paste = image_to_paste.repeat(B // PB, 1, 1, 1)
mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(H, W), mode='nearest')[:,0,:,:]
MB, MH, MW = mask.shape
# masks_to_boxes errors if the tensor is all zeros, so we'll add a single pixel and zero it out at the end
is_empty = ~torch.gt(torch.max(torch.reshape(mask,[MB, MH * MW]), dim=1).values, 0.)
mask[is_empty,0,0] = 1.
boxes = masks_to_boxes(mask)
mask[is_empty,0,0] = 0.
min_x = boxes[:,0]
min_y = boxes[:,1]
max_x = boxes[:,2]
max_y = boxes[:,3]
mid_x = (min_x + max_x) / 2
mid_y = (min_y + max_y) / 2
target_width = max_x - min_x + 1
target_height = max_y - min_y + 1
result = image_base.detach().clone()
face_segment = mask_image_final
for i in range(0, MB):
if is_empty[i]:
continue
else:
image_index = i
source_size = image_to_paste.size()
SB, SH, SW, _ = image_to_paste.shape
# Figure out the desired size
width = int(target_width[i].item())
height = int(target_height[i].item())
# if self.resize_behavior == "keep_ratio_fill":
# target_ratio = width / height
# actual_ratio = SW / SH
# if actual_ratio > target_ratio:
# width = int(height * actual_ratio)
# elif actual_ratio < target_ratio:
# height = int(width / actual_ratio)
# elif self.resize_behavior == "keep_ratio_fit":
# target_ratio = width / height
# actual_ratio = SW / SH
# if actual_ratio > target_ratio:
# height = int(width / actual_ratio)
# elif actual_ratio < target_ratio:
# width = int(height * actual_ratio)
# elif self.resize_behavior == "source_size" or self.resize_behavior == "source_size_unmasked":
width = SW
height = SH
# Resize the image we're pasting if needed
resized_image = image_to_paste[i].unsqueeze(0)
# if SH != height or SW != width:
# resized_image = torch.nn.functional.interpolate(resized_image.permute(0, 3, 1, 2), size=(height,width), mode='bicubic').permute(0, 2, 3, 1)
pasting = torch.ones([H, W, C])
ymid = float(mid_y[i].item())
ymin = int(math.floor(ymid - height / 2)) + 1
ymax = int(math.floor(ymid + height / 2)) + 1
xmid = float(mid_x[i].item())
xmin = int(math.floor(xmid - width / 2)) + 1
xmax = int(math.floor(xmid + width / 2)) + 1
_, source_ymax, source_xmax, _ = resized_image.shape
source_ymin, source_xmin = 0, 0
if xmin < 0:
source_xmin = abs(xmin)
xmin = 0
if ymin < 0:
source_ymin = abs(ymin)
ymin = 0
if xmax > W:
source_xmax -= (xmax - W)
xmax = W
if ymax > H:
source_ymax -= (ymax - H)
ymax = H
pasting[ymin:ymax, xmin:xmax, :] = resized_image[0, source_ymin:source_ymax, source_xmin:source_xmax, :]
pasting[:, :, 3] = 1.
pasting_alpha = torch.zeros([H, W])
pasting_alpha[ymin:ymax, xmin:xmax] = resized_image[0, source_ymin:source_ymax, source_xmin:source_xmax, 3]
# if self.resize_behavior == "keep_ratio_fill" or self.resize_behavior == "source_size_unmasked":
# # If we explicitly want to fill the area, we are ok with extending outside
# paste_mask = pasting_alpha.unsqueeze(2).repeat(1, 1, 4)
# else:
# paste_mask = torch.min(pasting_alpha, mask[i]).unsqueeze(2).repeat(1, 1, 4)
paste_mask = torch.min(pasting_alpha, mask[i]).unsqueeze(2).repeat(1, 1, 4)
result[image_index] = pasting * paste_mask + result[image_index] * (1. - paste_mask)
face_segment = result
face_segment[...,3] = mask[i]
result = rgba2rgb_tensor(result)
return (result,combined_mask,mask_image_final,face_segment,)
def gaussian_blur(self, image, kernel_size, sigma):
kernel = torch.Tensor(kernel_size, kernel_size).to(device=image.device)
center = kernel_size // 2
variance = sigma**2
for i in range(kernel_size):
for j in range(kernel_size):
x = i - center
y = j - center
kernel[i, j] = math.exp(-(x**2 + y**2)/(2*variance))
kernel /= kernel.sum()
# Pad the input tensor
padding = (kernel_size - 1) // 2
input_pad = torch.nn.functional.pad(image, (padding, padding, padding, padding), mode='reflect')
# Reshape the padded input tensor for batched convolution
batch_size, num_channels, height, width = image.shape
input_reshaped = input_pad.reshape(batch_size*num_channels, 1, height+padding*2, width+padding*2)
# Perform batched convolution with the Gaussian kernel
output_reshaped = torch.nn.functional.conv2d(input_reshaped, kernel.unsqueeze(0).unsqueeze(0))
# Reshape the output tensor to its original shape
output_tensor = output_reshaped.reshape(batch_size, num_channels, height, width)
return output_tensor
def erode(self, image, distance):
return 1. - self.dilate(1. - image, distance)
def dilate(self, image, distance):
kernel_size = 1 + distance * 2
# Add the channels dimension
image = image.unsqueeze(1)
out = torchfn.max_pool2d(image, kernel_size=kernel_size, stride=1, padding=kernel_size // 2).squeeze(1)
return out
class ImageDublicator:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"count": ("INT", {"default": 1, "min": 0}),
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("IMAGES",)
OUTPUT_IS_LIST = (True,)
FUNCTION = "execute"
CATEGORY = "π ReActor"
def execute(self, image, count):
images = [image for i in range(count)]
return (images,)
class ImageRGBA2RGB:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "π ReActor"
def execute(self, image):
out = rgba2rgb_tensor(image)
return (out,)
class MakeFaceModelBatch:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"face_model1": ("FACE_MODEL",),
},
"optional": {
"face_model2": ("FACE_MODEL",),
"face_model3": ("FACE_MODEL",),
"face_model4": ("FACE_MODEL",),
"face_model5": ("FACE_MODEL",),
"face_model6": ("FACE_MODEL",),
"face_model7": ("FACE_MODEL",),
"face_model8": ("FACE_MODEL",),
"face_model9": ("FACE_MODEL",),
"face_model10": ("FACE_MODEL",),
},
}
RETURN_TYPES = ("FACE_MODEL",)
RETURN_NAMES = ("FACE_MODELS",)
FUNCTION = "execute"
CATEGORY = "π ReActor"
def execute(self, **kwargs):
if len(kwargs) > 0:
face_models = [value for value in kwargs.values()]
return (face_models,)
else:
logger.error("Please provide at least 1 `face_model`")
return (None,)
class ReActorOptions:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"input_faces_order": (
["left-right","right-left","top-bottom","bottom-top","small-large","large-small"], {"default": "large-small"}
),
"input_faces_index": ("STRING", {"default": "0"}),
"detect_gender_input": (["no","female","male"], {"default": "no"}),
"source_faces_order": (
["left-right","right-left","top-bottom","bottom-top","small-large","large-small"], {"default": "large-small"}
),
"source_faces_index": ("STRING", {"default": "0"}),
"detect_gender_source": (["no","female","male"], {"default": "no"}),
"console_log_level": ([0, 1, 2], {"default": 1}),
}
}
RETURN_TYPES = ("OPTIONS",)
FUNCTION = "execute"
CATEGORY = "π ReActor"
def execute(self,input_faces_order, input_faces_index, detect_gender_input, source_faces_order, source_faces_index, detect_gender_source, console_log_level):
options: dict = {
"input_faces_order": input_faces_order,
"input_faces_index": input_faces_index,
"detect_gender_input": detect_gender_input,
"source_faces_order": source_faces_order,
"source_faces_index": source_faces_index,
"detect_gender_source": detect_gender_source,
"console_log_level": console_log_level,
}
return (options, )
class ReActorFaceBoost:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"enabled": ("BOOLEAN", {"default": True, "label_off": "OFF", "label_on": "ON"}),
"boost_model": (get_model_names(get_restorers),),
"interpolation": (["Nearest","Bilinear","Bicubic","Lanczos"], {"default": "Bicubic"}),
"visibility": ("FLOAT", {"default": 1, "min": 0.1, "max": 1, "step": 0.05}),
"codeformer_weight": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1, "step": 0.05}),
"restore_with_main_after": ("BOOLEAN", {"default": False}),
}
}
RETURN_TYPES = ("FACE_BOOST",)
FUNCTION = "execute"
CATEGORY = "π ReActor"
def execute(self,enabled,boost_model,interpolation,visibility,codeformer_weight,restore_with_main_after):
face_boost: dict = {
"enabled": enabled,
"boost_model": boost_model,
"interpolation": interpolation,
"visibility": visibility,
"codeformer_weight": codeformer_weight,
"restore_with_main_after": restore_with_main_after,
}
return (face_boost, )
NODE_CLASS_MAPPINGS = {
# --- MAIN NODES ---
"ReActorFaceSwap": reactor,
"ReActorFaceSwapOpt": ReActorPlusOpt,
"ReActorOptions": ReActorOptions,
"ReActorFaceBoost": ReActorFaceBoost,
"ReActorMaskHelper": MaskHelper,
# --- Operations with Face Models ---
"ReActorSaveFaceModel": SaveFaceModel,
"ReActorLoadFaceModel": LoadFaceModel,
"ReActorBuildFaceModel": BuildFaceModel,
"ReActorMakeFaceModelBatch": MakeFaceModelBatch,
# --- Additional Nodes ---
"ReActorRestoreFace": RestoreFace,
"ReActorImageDublicator": ImageDublicator,
"ImageRGBA2RGB": ImageRGBA2RGB,
}
NODE_DISPLAY_NAME_MAPPINGS = {
# --- MAIN NODES ---
"ReActorFaceSwap": "ReActor π Fast Face Swap",
"ReActorFaceSwapOpt": "ReActor π Fast Face Swap [OPTIONS]",
"ReActorOptions": "ReActor π Options",
"ReActorFaceBoost": "ReActor π Face Booster",
"ReActorMaskHelper": "ReActor π Masking Helper",
# --- Operations with Face Models ---
"ReActorSaveFaceModel": "Save Face Model π ReActor",
"ReActorLoadFaceModel": "Load Face Model π ReActor",
"ReActorBuildFaceModel": "Build Blended Face Model π ReActor",
"ReActorMakeFaceModelBatch": "Make Face Model Batch π ReActor",
# --- Additional Nodes ---
"ReActorRestoreFace": "Restore Face π ReActor",
"ReActorImageDublicator": "Image Dublicator (List) π ReActor",
"ImageRGBA2RGB": "Convert RGBA to RGB π ReActor",
}
|