File size: 24,768 Bytes
1e3b872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
import os
import shutil
from typing import List, Union

import cv2
import numpy as np
from PIL import Image

import insightface
from insightface.app.common import Face
try:
    import torch.cuda as cuda
except:
    cuda = None

import folder_paths
import comfy.model_management as model_management
from modules.shared import state

from scripts.reactor_logger import logger
from reactor_utils import (
    move_path,
    get_image_md5hash,
)
from scripts.r_faceboost import swapper, restorer

import warnings

np.warnings = warnings
np.warnings.filterwarnings('ignore')

if cuda is not None:
    if cuda.is_available():
        providers = ["CUDAExecutionProvider"]
    else:
        providers = ["CPUExecutionProvider"]
else:
    providers = ["CPUExecutionProvider"]

models_path_old = os.path.join(os.path.dirname(os.path.dirname(__file__)), "models")
insightface_path_old = os.path.join(models_path_old, "insightface")
insightface_models_path_old = os.path.join(insightface_path_old, "models")

models_path = folder_paths.models_dir
insightface_path = os.path.join(models_path, "insightface")
insightface_models_path = os.path.join(insightface_path, "models")

if os.path.exists(models_path_old):
    move_path(insightface_models_path_old, insightface_models_path)
    move_path(insightface_path_old, insightface_path)
    move_path(models_path_old, models_path)
if os.path.exists(insightface_path) and os.path.exists(insightface_path_old):
    shutil.rmtree(insightface_path_old)
    shutil.rmtree(models_path_old)


FS_MODEL = None
CURRENT_FS_MODEL_PATH = None

ANALYSIS_MODELS = {
    "640": None,
    "320": None,
}

SOURCE_FACES = None
SOURCE_IMAGE_HASH = None
TARGET_FACES = None
TARGET_IMAGE_HASH = None
TARGET_FACES_LIST = []
TARGET_IMAGE_LIST_HASH = []


def get_current_faces_model():
    global SOURCE_FACES
    return SOURCE_FACES

def getAnalysisModel(det_size = (640, 640)):
    global ANALYSIS_MODELS
    ANALYSIS_MODEL = ANALYSIS_MODELS[str(det_size[0])]
    if ANALYSIS_MODEL is None:
        ANALYSIS_MODEL = insightface.app.FaceAnalysis(
            name="buffalo_l", providers=providers, root=insightface_path
        )
    ANALYSIS_MODEL.prepare(ctx_id=0, det_size=det_size)
    ANALYSIS_MODELS[str(det_size[0])] = ANALYSIS_MODEL
    return ANALYSIS_MODEL

def getFaceSwapModel(model_path: str):
    global FS_MODEL
    global CURRENT_FS_MODEL_PATH
    if CURRENT_FS_MODEL_PATH is None or CURRENT_FS_MODEL_PATH != model_path:
        CURRENT_FS_MODEL_PATH = model_path
        FS_MODEL = insightface.model_zoo.get_model(model_path, providers=providers)

    return FS_MODEL


def sort_by_order(face, order: str):
    if order == "left-right":
        return sorted(face, key=lambda x: x.bbox[0])
    if order == "right-left":
        return sorted(face, key=lambda x: x.bbox[0], reverse = True)
    if order == "top-bottom":
        return sorted(face, key=lambda x: x.bbox[1])
    if order == "bottom-top":
        return sorted(face, key=lambda x: x.bbox[1], reverse = True)
    if order == "small-large":
        return sorted(face, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))
    # if order == "large-small":
    #     return sorted(face, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]), reverse = True)
    # by default "large-small":
    return sorted(face, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]), reverse = True)

def get_face_gender(
        face,
        face_index,
        gender_condition,
        operated: str,
        order: str,
):
    gender = [
        x.sex
        for x in face
    ]
    gender.reverse()
    # If index is outside of bounds, return None, avoid exception
    if face_index >= len(gender):
        logger.status("Requested face index (%s) is out of bounds (max available index is %s)", face_index, len(gender))
        return None, 0
    face_gender = gender[face_index]
    logger.status("%s Face %s: Detected Gender -%s-", operated, face_index, face_gender)
    if (gender_condition == 1 and face_gender == "F") or (gender_condition == 2 and face_gender == "M"):
        logger.status("OK - Detected Gender matches Condition")
        try:
            faces_sorted = sort_by_order(face, order)
            return faces_sorted[face_index], 0
            # return sorted(face, key=lambda x: x.bbox[0])[face_index], 0
        except IndexError:
            return None, 0
    else:
        logger.status("WRONG - Detected Gender doesn't match Condition")
        faces_sorted = sort_by_order(face, order)
        return faces_sorted[face_index], 1
        # return sorted(face, key=lambda x: x.bbox[0])[face_index], 1

def half_det_size(det_size):
    logger.status("Trying to halve 'det_size' parameter")
    return (det_size[0] // 2, det_size[1] // 2)

def analyze_faces(img_data: np.ndarray, det_size=(640, 640)):
    face_analyser = getAnalysisModel(det_size)
    faces = face_analyser.get(img_data)

    # Try halving det_size if no faces are found
    if len(faces) == 0 and det_size[0] > 320 and det_size[1] > 320:
        det_size_half = half_det_size(det_size)
        return analyze_faces(img_data, det_size_half)

    return faces

def get_face_single(img_data: np.ndarray, face, face_index=0, det_size=(640, 640), gender_source=0, gender_target=0, order="large-small"):

    buffalo_path = os.path.join(insightface_models_path, "buffalo_l.zip")
    if os.path.exists(buffalo_path):
        os.remove(buffalo_path)

    if gender_source != 0:
        if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320:
            det_size_half = half_det_size(det_size)
            return get_face_single(img_data, analyze_faces(img_data, det_size_half), face_index, det_size_half, gender_source, gender_target, order)
        return get_face_gender(face,face_index,gender_source,"Source", order)

    if gender_target != 0:
        if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320:
            det_size_half = half_det_size(det_size)
            return get_face_single(img_data, analyze_faces(img_data, det_size_half), face_index, det_size_half, gender_source, gender_target, order)
        return get_face_gender(face,face_index,gender_target,"Target", order)
    
    if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320:
        det_size_half = half_det_size(det_size)
        return get_face_single(img_data, analyze_faces(img_data, det_size_half), face_index, det_size_half, gender_source, gender_target, order)

    try:
        faces_sorted = sort_by_order(face, order)
        return faces_sorted[face_index], 0
        # return sorted(face, key=lambda x: x.bbox[0])[face_index], 0
    except IndexError:
        return None, 0


def swap_face(
    source_img: Union[Image.Image, None],
    target_img: Image.Image,
    model: Union[str, None] = None,
    source_faces_index: List[int] = [0],
    faces_index: List[int] = [0],
    gender_source: int = 0,
    gender_target: int = 0,
    face_model: Union[Face, None] = None,
    faces_order: List = ["large-small", "large-small"],
    face_boost_enabled: bool = False,
    face_restore_model = None,
    face_restore_visibility: int = 1,
    codeformer_weight: float = 0.5,
    interpolation: str = "Bicubic",
):
    global SOURCE_FACES, SOURCE_IMAGE_HASH, TARGET_FACES, TARGET_IMAGE_HASH
    result_image = target_img

    if model is not None:

        if isinstance(source_img, str):  # source_img is a base64 string
            import base64, io
            if 'base64,' in source_img:  # check if the base64 string has a data URL scheme
                # split the base64 string to get the actual base64 encoded image data
                base64_data = source_img.split('base64,')[-1]
                # decode base64 string to bytes
                img_bytes = base64.b64decode(base64_data)
            else:
                # if no data URL scheme, just decode
                img_bytes = base64.b64decode(source_img)
            
            source_img = Image.open(io.BytesIO(img_bytes))
            
        target_img = cv2.cvtColor(np.array(target_img), cv2.COLOR_RGB2BGR)

        if source_img is not None:

            source_img = cv2.cvtColor(np.array(source_img), cv2.COLOR_RGB2BGR)

            source_image_md5hash = get_image_md5hash(source_img)

            if SOURCE_IMAGE_HASH is None:
                SOURCE_IMAGE_HASH = source_image_md5hash
                source_image_same = False
            else:
                source_image_same = True if SOURCE_IMAGE_HASH == source_image_md5hash else False
                if not source_image_same:
                    SOURCE_IMAGE_HASH = source_image_md5hash

            logger.info("Source Image MD5 Hash = %s", SOURCE_IMAGE_HASH)
            logger.info("Source Image the Same? %s", source_image_same)

            if SOURCE_FACES is None or not source_image_same:
                logger.status("Analyzing Source Image...")
                source_faces = analyze_faces(source_img)
                SOURCE_FACES = source_faces
            elif source_image_same:
                logger.status("Using Hashed Source Face(s) Model...")
                source_faces = SOURCE_FACES

        elif face_model is not None:

            source_faces_index = [0]
            logger.status("Using Loaded Source Face Model...")
            source_face_model = [face_model]
            source_faces = source_face_model

        else:
            logger.error("Cannot detect any Source")

        if source_faces is not None:

            target_image_md5hash = get_image_md5hash(target_img)

            if TARGET_IMAGE_HASH is None:
                TARGET_IMAGE_HASH = target_image_md5hash
                target_image_same = False
            else:
                target_image_same = True if TARGET_IMAGE_HASH == target_image_md5hash else False
                if not target_image_same:
                    TARGET_IMAGE_HASH = target_image_md5hash

            logger.info("Target Image MD5 Hash = %s", TARGET_IMAGE_HASH)
            logger.info("Target Image the Same? %s", target_image_same)
            
            if TARGET_FACES is None or not target_image_same:
                logger.status("Analyzing Target Image...")
                target_faces = analyze_faces(target_img)
                TARGET_FACES = target_faces
            elif target_image_same:
                logger.status("Using Hashed Target Face(s) Model...")
                target_faces = TARGET_FACES

            # No use in trying to swap faces if no faces are found, enhancement
            if len(target_faces) == 0:
                logger.status("Cannot detect any Target, skipping swapping...")
                return result_image

            if source_img is not None:
                # separated management of wrong_gender between source and target, enhancement
                source_face, src_wrong_gender = get_face_single(source_img, source_faces, face_index=source_faces_index[0], gender_source=gender_source, order=faces_order[1])
            else:
                # source_face = sorted(source_faces, key=lambda x: x.bbox[0])[source_faces_index[0]]
                source_face = sorted(source_faces, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]), reverse = True)[source_faces_index[0]]
                src_wrong_gender = 0

            if len(source_faces_index) != 0 and len(source_faces_index) != 1 and len(source_faces_index) != len(faces_index):
                logger.status(f'Source Faces must have no entries (default=0), one entry, or same number of entries as target faces.')
            elif source_face is not None:
                result = target_img
                model_path = model_path = os.path.join(insightface_path, model)
                face_swapper = getFaceSwapModel(model_path)

                source_face_idx = 0

                for face_num in faces_index:
                    # No use in trying to swap faces if no further faces are found, enhancement
                    if face_num >= len(target_faces):
                        logger.status("Checked all existing target faces, skipping swapping...")
                        break

                    if len(source_faces_index) > 1 and source_face_idx > 0:
                        source_face, src_wrong_gender = get_face_single(source_img, source_faces, face_index=source_faces_index[source_face_idx], gender_source=gender_source, order=faces_order[1])
                    source_face_idx += 1

                    if source_face is not None and src_wrong_gender == 0:
                        target_face, wrong_gender = get_face_single(target_img, target_faces, face_index=face_num, gender_target=gender_target, order=faces_order[0])
                        if target_face is not None and wrong_gender == 0:
                            logger.status(f"Swapping...")
                            if face_boost_enabled:
                                logger.status(f"Face Boost is enabled")
                                bgr_fake, M = face_swapper.get(result, target_face, source_face, paste_back=False)
                                bgr_fake, scale = restorer.get_restored_face(bgr_fake, face_restore_model, face_restore_visibility, codeformer_weight, interpolation)
                                M *= scale
                                result = swapper.in_swap(target_img, bgr_fake, M)
                            else:
                                # logger.status(f"Swapping as-is")
                                result = face_swapper.get(result, target_face, source_face)
                        elif wrong_gender == 1:
                            wrong_gender = 0
                            # Keep searching for other faces if wrong gender is detected, enhancement
                            #if source_face_idx == len(source_faces_index):
                            #    result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
                            #    return result_image
                            logger.status("Wrong target gender detected")
                            continue
                        else:
                            logger.status(f"No target face found for {face_num}")
                    elif src_wrong_gender == 1:
                        src_wrong_gender = 0
                        # Keep searching for other faces if wrong gender is detected, enhancement
                        #if source_face_idx == len(source_faces_index):
                        #    result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
                        #    return result_image
                        logger.status("Wrong source gender detected")
                        continue
                    else:
                        logger.status(f"No source face found for face number {source_face_idx}.")

                result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))

            else:
                logger.status("No source face(s) in the provided Index")
        else:
            logger.status("No source face(s) found")
    return result_image

def swap_face_many(
    source_img: Union[Image.Image, None],
    target_imgs: List[Image.Image],
    model: Union[str, None] = None,
    source_faces_index: List[int] = [0],
    faces_index: List[int] = [0],
    gender_source: int = 0,
    gender_target: int = 0,
    face_model: Union[Face, None] = None,
    faces_order: List = ["large-small", "large-small"],
    face_boost_enabled: bool = False,
    face_restore_model = None,
    face_restore_visibility: int = 1,
    codeformer_weight: float = 0.5,
    interpolation: str = "Bicubic",
):
    global SOURCE_FACES, SOURCE_IMAGE_HASH, TARGET_FACES, TARGET_IMAGE_HASH, TARGET_FACES_LIST, TARGET_IMAGE_LIST_HASH
    result_images = target_imgs

    if model is not None:

        if isinstance(source_img, str):  # source_img is a base64 string
            import base64, io
            if 'base64,' in source_img:  # check if the base64 string has a data URL scheme
                # split the base64 string to get the actual base64 encoded image data
                base64_data = source_img.split('base64,')[-1]
                # decode base64 string to bytes
                img_bytes = base64.b64decode(base64_data)
            else:
                # if no data URL scheme, just decode
                img_bytes = base64.b64decode(source_img)
            
            source_img = Image.open(io.BytesIO(img_bytes))
            
        target_imgs = [cv2.cvtColor(np.array(target_img), cv2.COLOR_RGB2BGR) for target_img in target_imgs]

        if source_img is not None:

            source_img = cv2.cvtColor(np.array(source_img), cv2.COLOR_RGB2BGR)

            source_image_md5hash = get_image_md5hash(source_img)

            if SOURCE_IMAGE_HASH is None:
                SOURCE_IMAGE_HASH = source_image_md5hash
                source_image_same = False
            else:
                source_image_same = True if SOURCE_IMAGE_HASH == source_image_md5hash else False
                if not source_image_same:
                    SOURCE_IMAGE_HASH = source_image_md5hash

            logger.info("Source Image MD5 Hash = %s", SOURCE_IMAGE_HASH)
            logger.info("Source Image the Same? %s", source_image_same)

            if SOURCE_FACES is None or not source_image_same:
                logger.status("Analyzing Source Image...")
                source_faces = analyze_faces(source_img)
                SOURCE_FACES = source_faces
            elif source_image_same:
                logger.status("Using Hashed Source Face(s) Model...")
                source_faces = SOURCE_FACES

        elif face_model is not None:

            source_faces_index = [0]
            logger.status("Using Loaded Source Face Model...")
            source_face_model = [face_model]
            source_faces = source_face_model

        else:
            logger.error("Cannot detect any Source")

        if source_faces is not None:

            target_faces = []
            for i, target_img in enumerate(target_imgs):
                if state.interrupted or model_management.processing_interrupted():
                    logger.status("Interrupted by User")
                    break
                
                target_image_md5hash = get_image_md5hash(target_img)
                if len(TARGET_IMAGE_LIST_HASH) == 0:
                    TARGET_IMAGE_LIST_HASH = [target_image_md5hash]
                    target_image_same = False
                elif len(TARGET_IMAGE_LIST_HASH) == i:
                    TARGET_IMAGE_LIST_HASH.append(target_image_md5hash)
                    target_image_same = False
                else:
                    target_image_same = True if TARGET_IMAGE_LIST_HASH[i] == target_image_md5hash else False
                    if not target_image_same:
                        TARGET_IMAGE_LIST_HASH[i] = target_image_md5hash
                
                logger.info("(Image %s) Target Image MD5 Hash = %s", i, TARGET_IMAGE_LIST_HASH[i])
                logger.info("(Image %s) Target Image the Same? %s", i, target_image_same)

                if len(TARGET_FACES_LIST) == 0:
                    logger.status(f"Analyzing Target Image {i}...")
                    target_face = analyze_faces(target_img)
                    TARGET_FACES_LIST = [target_face]
                elif len(TARGET_FACES_LIST) == i and not target_image_same:
                    logger.status(f"Analyzing Target Image {i}...")
                    target_face = analyze_faces(target_img)
                    TARGET_FACES_LIST.append(target_face)
                elif len(TARGET_FACES_LIST) != i and not target_image_same:
                    logger.status(f"Analyzing Target Image {i}...")
                    target_face = analyze_faces(target_img)
                    TARGET_FACES_LIST[i] = target_face
                elif target_image_same:
                    logger.status("(Image %s) Using Hashed Target Face(s) Model...", i)
                    target_face = TARGET_FACES_LIST[i]
                

                # logger.status(f"Analyzing Target Image {i}...")
                # target_face = analyze_faces(target_img)
                if target_face is not None:
                    target_faces.append(target_face)

            # No use in trying to swap faces if no faces are found, enhancement
            if len(target_faces) == 0:
                logger.status("Cannot detect any Target, skipping swapping...")
                return result_images

            if source_img is not None:
                # separated management of wrong_gender between source and target, enhancement
                source_face, src_wrong_gender = get_face_single(source_img, source_faces, face_index=source_faces_index[0], gender_source=gender_source, order=faces_order[1])
            else:
                # source_face = sorted(source_faces, key=lambda x: x.bbox[0])[source_faces_index[0]]
                source_face = sorted(source_faces, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]), reverse = True)[source_faces_index[0]]
                src_wrong_gender = 0

            if len(source_faces_index) != 0 and len(source_faces_index) != 1 and len(source_faces_index) != len(faces_index):
                logger.status(f'Source Faces must have no entries (default=0), one entry, or same number of entries as target faces.')
            elif source_face is not None:
                results = target_imgs
                model_path = model_path = os.path.join(insightface_path, model)
                face_swapper = getFaceSwapModel(model_path)

                source_face_idx = 0

                for face_num in faces_index:
                    # No use in trying to swap faces if no further faces are found, enhancement
                    if face_num >= len(target_faces):
                        logger.status("Checked all existing target faces, skipping swapping...")
                        break

                    if len(source_faces_index) > 1 and source_face_idx > 0:
                        source_face, src_wrong_gender = get_face_single(source_img, source_faces, face_index=source_faces_index[source_face_idx], gender_source=gender_source, order=faces_order[1])
                    source_face_idx += 1

                    if source_face is not None and src_wrong_gender == 0:
                        # Reading results to make current face swap on a previous face result
                        for i, (target_img, target_face) in enumerate(zip(results, target_faces)):
                            target_face_single, wrong_gender = get_face_single(target_img, target_face, face_index=face_num, gender_target=gender_target, order=faces_order[0])
                            if target_face_single is not None and wrong_gender == 0:
                                result = target_img
                                logger.status(f"Swapping {i}...")
                                if face_boost_enabled:
                                    logger.status(f"Face Boost is enabled")
                                    bgr_fake, M = face_swapper.get(target_img, target_face_single, source_face, paste_back=False)
                                    bgr_fake, scale = restorer.get_restored_face(bgr_fake, face_restore_model, face_restore_visibility, codeformer_weight, interpolation)
                                    M *= scale
                                    result = swapper.in_swap(target_img, bgr_fake, M)
                                else:
                                    # logger.status(f"Swapping as-is")
                                    result = face_swapper.get(target_img, target_face_single, source_face)
                                results[i] = result
                            elif wrong_gender == 1:
                                wrong_gender = 0
                                logger.status("Wrong target gender detected")
                                continue
                            else:
                                logger.status(f"No target face found for {face_num}")
                    elif src_wrong_gender == 1:
                        src_wrong_gender = 0
                        logger.status("Wrong source gender detected")
                        continue
                    else:
                        logger.status(f"No source face found for face number {source_face_idx}.")

                result_images = [Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB)) for result in results]

            else:
                logger.status("No source face(s) in the provided Index")
        else:
            logger.status("No source face(s) found")
    return result_images