File size: 24,768 Bytes
1e3b872 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 |
import os
import shutil
from typing import List, Union
import cv2
import numpy as np
from PIL import Image
import insightface
from insightface.app.common import Face
try:
import torch.cuda as cuda
except:
cuda = None
import folder_paths
import comfy.model_management as model_management
from modules.shared import state
from scripts.reactor_logger import logger
from reactor_utils import (
move_path,
get_image_md5hash,
)
from scripts.r_faceboost import swapper, restorer
import warnings
np.warnings = warnings
np.warnings.filterwarnings('ignore')
if cuda is not None:
if cuda.is_available():
providers = ["CUDAExecutionProvider"]
else:
providers = ["CPUExecutionProvider"]
else:
providers = ["CPUExecutionProvider"]
models_path_old = os.path.join(os.path.dirname(os.path.dirname(__file__)), "models")
insightface_path_old = os.path.join(models_path_old, "insightface")
insightface_models_path_old = os.path.join(insightface_path_old, "models")
models_path = folder_paths.models_dir
insightface_path = os.path.join(models_path, "insightface")
insightface_models_path = os.path.join(insightface_path, "models")
if os.path.exists(models_path_old):
move_path(insightface_models_path_old, insightface_models_path)
move_path(insightface_path_old, insightface_path)
move_path(models_path_old, models_path)
if os.path.exists(insightface_path) and os.path.exists(insightface_path_old):
shutil.rmtree(insightface_path_old)
shutil.rmtree(models_path_old)
FS_MODEL = None
CURRENT_FS_MODEL_PATH = None
ANALYSIS_MODELS = {
"640": None,
"320": None,
}
SOURCE_FACES = None
SOURCE_IMAGE_HASH = None
TARGET_FACES = None
TARGET_IMAGE_HASH = None
TARGET_FACES_LIST = []
TARGET_IMAGE_LIST_HASH = []
def get_current_faces_model():
global SOURCE_FACES
return SOURCE_FACES
def getAnalysisModel(det_size = (640, 640)):
global ANALYSIS_MODELS
ANALYSIS_MODEL = ANALYSIS_MODELS[str(det_size[0])]
if ANALYSIS_MODEL is None:
ANALYSIS_MODEL = insightface.app.FaceAnalysis(
name="buffalo_l", providers=providers, root=insightface_path
)
ANALYSIS_MODEL.prepare(ctx_id=0, det_size=det_size)
ANALYSIS_MODELS[str(det_size[0])] = ANALYSIS_MODEL
return ANALYSIS_MODEL
def getFaceSwapModel(model_path: str):
global FS_MODEL
global CURRENT_FS_MODEL_PATH
if CURRENT_FS_MODEL_PATH is None or CURRENT_FS_MODEL_PATH != model_path:
CURRENT_FS_MODEL_PATH = model_path
FS_MODEL = insightface.model_zoo.get_model(model_path, providers=providers)
return FS_MODEL
def sort_by_order(face, order: str):
if order == "left-right":
return sorted(face, key=lambda x: x.bbox[0])
if order == "right-left":
return sorted(face, key=lambda x: x.bbox[0], reverse = True)
if order == "top-bottom":
return sorted(face, key=lambda x: x.bbox[1])
if order == "bottom-top":
return sorted(face, key=lambda x: x.bbox[1], reverse = True)
if order == "small-large":
return sorted(face, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))
# if order == "large-small":
# return sorted(face, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]), reverse = True)
# by default "large-small":
return sorted(face, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]), reverse = True)
def get_face_gender(
face,
face_index,
gender_condition,
operated: str,
order: str,
):
gender = [
x.sex
for x in face
]
gender.reverse()
# If index is outside of bounds, return None, avoid exception
if face_index >= len(gender):
logger.status("Requested face index (%s) is out of bounds (max available index is %s)", face_index, len(gender))
return None, 0
face_gender = gender[face_index]
logger.status("%s Face %s: Detected Gender -%s-", operated, face_index, face_gender)
if (gender_condition == 1 and face_gender == "F") or (gender_condition == 2 and face_gender == "M"):
logger.status("OK - Detected Gender matches Condition")
try:
faces_sorted = sort_by_order(face, order)
return faces_sorted[face_index], 0
# return sorted(face, key=lambda x: x.bbox[0])[face_index], 0
except IndexError:
return None, 0
else:
logger.status("WRONG - Detected Gender doesn't match Condition")
faces_sorted = sort_by_order(face, order)
return faces_sorted[face_index], 1
# return sorted(face, key=lambda x: x.bbox[0])[face_index], 1
def half_det_size(det_size):
logger.status("Trying to halve 'det_size' parameter")
return (det_size[0] // 2, det_size[1] // 2)
def analyze_faces(img_data: np.ndarray, det_size=(640, 640)):
face_analyser = getAnalysisModel(det_size)
faces = face_analyser.get(img_data)
# Try halving det_size if no faces are found
if len(faces) == 0 and det_size[0] > 320 and det_size[1] > 320:
det_size_half = half_det_size(det_size)
return analyze_faces(img_data, det_size_half)
return faces
def get_face_single(img_data: np.ndarray, face, face_index=0, det_size=(640, 640), gender_source=0, gender_target=0, order="large-small"):
buffalo_path = os.path.join(insightface_models_path, "buffalo_l.zip")
if os.path.exists(buffalo_path):
os.remove(buffalo_path)
if gender_source != 0:
if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320:
det_size_half = half_det_size(det_size)
return get_face_single(img_data, analyze_faces(img_data, det_size_half), face_index, det_size_half, gender_source, gender_target, order)
return get_face_gender(face,face_index,gender_source,"Source", order)
if gender_target != 0:
if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320:
det_size_half = half_det_size(det_size)
return get_face_single(img_data, analyze_faces(img_data, det_size_half), face_index, det_size_half, gender_source, gender_target, order)
return get_face_gender(face,face_index,gender_target,"Target", order)
if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320:
det_size_half = half_det_size(det_size)
return get_face_single(img_data, analyze_faces(img_data, det_size_half), face_index, det_size_half, gender_source, gender_target, order)
try:
faces_sorted = sort_by_order(face, order)
return faces_sorted[face_index], 0
# return sorted(face, key=lambda x: x.bbox[0])[face_index], 0
except IndexError:
return None, 0
def swap_face(
source_img: Union[Image.Image, None],
target_img: Image.Image,
model: Union[str, None] = None,
source_faces_index: List[int] = [0],
faces_index: List[int] = [0],
gender_source: int = 0,
gender_target: int = 0,
face_model: Union[Face, None] = None,
faces_order: List = ["large-small", "large-small"],
face_boost_enabled: bool = False,
face_restore_model = None,
face_restore_visibility: int = 1,
codeformer_weight: float = 0.5,
interpolation: str = "Bicubic",
):
global SOURCE_FACES, SOURCE_IMAGE_HASH, TARGET_FACES, TARGET_IMAGE_HASH
result_image = target_img
if model is not None:
if isinstance(source_img, str): # source_img is a base64 string
import base64, io
if 'base64,' in source_img: # check if the base64 string has a data URL scheme
# split the base64 string to get the actual base64 encoded image data
base64_data = source_img.split('base64,')[-1]
# decode base64 string to bytes
img_bytes = base64.b64decode(base64_data)
else:
# if no data URL scheme, just decode
img_bytes = base64.b64decode(source_img)
source_img = Image.open(io.BytesIO(img_bytes))
target_img = cv2.cvtColor(np.array(target_img), cv2.COLOR_RGB2BGR)
if source_img is not None:
source_img = cv2.cvtColor(np.array(source_img), cv2.COLOR_RGB2BGR)
source_image_md5hash = get_image_md5hash(source_img)
if SOURCE_IMAGE_HASH is None:
SOURCE_IMAGE_HASH = source_image_md5hash
source_image_same = False
else:
source_image_same = True if SOURCE_IMAGE_HASH == source_image_md5hash else False
if not source_image_same:
SOURCE_IMAGE_HASH = source_image_md5hash
logger.info("Source Image MD5 Hash = %s", SOURCE_IMAGE_HASH)
logger.info("Source Image the Same? %s", source_image_same)
if SOURCE_FACES is None or not source_image_same:
logger.status("Analyzing Source Image...")
source_faces = analyze_faces(source_img)
SOURCE_FACES = source_faces
elif source_image_same:
logger.status("Using Hashed Source Face(s) Model...")
source_faces = SOURCE_FACES
elif face_model is not None:
source_faces_index = [0]
logger.status("Using Loaded Source Face Model...")
source_face_model = [face_model]
source_faces = source_face_model
else:
logger.error("Cannot detect any Source")
if source_faces is not None:
target_image_md5hash = get_image_md5hash(target_img)
if TARGET_IMAGE_HASH is None:
TARGET_IMAGE_HASH = target_image_md5hash
target_image_same = False
else:
target_image_same = True if TARGET_IMAGE_HASH == target_image_md5hash else False
if not target_image_same:
TARGET_IMAGE_HASH = target_image_md5hash
logger.info("Target Image MD5 Hash = %s", TARGET_IMAGE_HASH)
logger.info("Target Image the Same? %s", target_image_same)
if TARGET_FACES is None or not target_image_same:
logger.status("Analyzing Target Image...")
target_faces = analyze_faces(target_img)
TARGET_FACES = target_faces
elif target_image_same:
logger.status("Using Hashed Target Face(s) Model...")
target_faces = TARGET_FACES
# No use in trying to swap faces if no faces are found, enhancement
if len(target_faces) == 0:
logger.status("Cannot detect any Target, skipping swapping...")
return result_image
if source_img is not None:
# separated management of wrong_gender between source and target, enhancement
source_face, src_wrong_gender = get_face_single(source_img, source_faces, face_index=source_faces_index[0], gender_source=gender_source, order=faces_order[1])
else:
# source_face = sorted(source_faces, key=lambda x: x.bbox[0])[source_faces_index[0]]
source_face = sorted(source_faces, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]), reverse = True)[source_faces_index[0]]
src_wrong_gender = 0
if len(source_faces_index) != 0 and len(source_faces_index) != 1 and len(source_faces_index) != len(faces_index):
logger.status(f'Source Faces must have no entries (default=0), one entry, or same number of entries as target faces.')
elif source_face is not None:
result = target_img
model_path = model_path = os.path.join(insightface_path, model)
face_swapper = getFaceSwapModel(model_path)
source_face_idx = 0
for face_num in faces_index:
# No use in trying to swap faces if no further faces are found, enhancement
if face_num >= len(target_faces):
logger.status("Checked all existing target faces, skipping swapping...")
break
if len(source_faces_index) > 1 and source_face_idx > 0:
source_face, src_wrong_gender = get_face_single(source_img, source_faces, face_index=source_faces_index[source_face_idx], gender_source=gender_source, order=faces_order[1])
source_face_idx += 1
if source_face is not None and src_wrong_gender == 0:
target_face, wrong_gender = get_face_single(target_img, target_faces, face_index=face_num, gender_target=gender_target, order=faces_order[0])
if target_face is not None and wrong_gender == 0:
logger.status(f"Swapping...")
if face_boost_enabled:
logger.status(f"Face Boost is enabled")
bgr_fake, M = face_swapper.get(result, target_face, source_face, paste_back=False)
bgr_fake, scale = restorer.get_restored_face(bgr_fake, face_restore_model, face_restore_visibility, codeformer_weight, interpolation)
M *= scale
result = swapper.in_swap(target_img, bgr_fake, M)
else:
# logger.status(f"Swapping as-is")
result = face_swapper.get(result, target_face, source_face)
elif wrong_gender == 1:
wrong_gender = 0
# Keep searching for other faces if wrong gender is detected, enhancement
#if source_face_idx == len(source_faces_index):
# result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
# return result_image
logger.status("Wrong target gender detected")
continue
else:
logger.status(f"No target face found for {face_num}")
elif src_wrong_gender == 1:
src_wrong_gender = 0
# Keep searching for other faces if wrong gender is detected, enhancement
#if source_face_idx == len(source_faces_index):
# result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
# return result_image
logger.status("Wrong source gender detected")
continue
else:
logger.status(f"No source face found for face number {source_face_idx}.")
result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
else:
logger.status("No source face(s) in the provided Index")
else:
logger.status("No source face(s) found")
return result_image
def swap_face_many(
source_img: Union[Image.Image, None],
target_imgs: List[Image.Image],
model: Union[str, None] = None,
source_faces_index: List[int] = [0],
faces_index: List[int] = [0],
gender_source: int = 0,
gender_target: int = 0,
face_model: Union[Face, None] = None,
faces_order: List = ["large-small", "large-small"],
face_boost_enabled: bool = False,
face_restore_model = None,
face_restore_visibility: int = 1,
codeformer_weight: float = 0.5,
interpolation: str = "Bicubic",
):
global SOURCE_FACES, SOURCE_IMAGE_HASH, TARGET_FACES, TARGET_IMAGE_HASH, TARGET_FACES_LIST, TARGET_IMAGE_LIST_HASH
result_images = target_imgs
if model is not None:
if isinstance(source_img, str): # source_img is a base64 string
import base64, io
if 'base64,' in source_img: # check if the base64 string has a data URL scheme
# split the base64 string to get the actual base64 encoded image data
base64_data = source_img.split('base64,')[-1]
# decode base64 string to bytes
img_bytes = base64.b64decode(base64_data)
else:
# if no data URL scheme, just decode
img_bytes = base64.b64decode(source_img)
source_img = Image.open(io.BytesIO(img_bytes))
target_imgs = [cv2.cvtColor(np.array(target_img), cv2.COLOR_RGB2BGR) for target_img in target_imgs]
if source_img is not None:
source_img = cv2.cvtColor(np.array(source_img), cv2.COLOR_RGB2BGR)
source_image_md5hash = get_image_md5hash(source_img)
if SOURCE_IMAGE_HASH is None:
SOURCE_IMAGE_HASH = source_image_md5hash
source_image_same = False
else:
source_image_same = True if SOURCE_IMAGE_HASH == source_image_md5hash else False
if not source_image_same:
SOURCE_IMAGE_HASH = source_image_md5hash
logger.info("Source Image MD5 Hash = %s", SOURCE_IMAGE_HASH)
logger.info("Source Image the Same? %s", source_image_same)
if SOURCE_FACES is None or not source_image_same:
logger.status("Analyzing Source Image...")
source_faces = analyze_faces(source_img)
SOURCE_FACES = source_faces
elif source_image_same:
logger.status("Using Hashed Source Face(s) Model...")
source_faces = SOURCE_FACES
elif face_model is not None:
source_faces_index = [0]
logger.status("Using Loaded Source Face Model...")
source_face_model = [face_model]
source_faces = source_face_model
else:
logger.error("Cannot detect any Source")
if source_faces is not None:
target_faces = []
for i, target_img in enumerate(target_imgs):
if state.interrupted or model_management.processing_interrupted():
logger.status("Interrupted by User")
break
target_image_md5hash = get_image_md5hash(target_img)
if len(TARGET_IMAGE_LIST_HASH) == 0:
TARGET_IMAGE_LIST_HASH = [target_image_md5hash]
target_image_same = False
elif len(TARGET_IMAGE_LIST_HASH) == i:
TARGET_IMAGE_LIST_HASH.append(target_image_md5hash)
target_image_same = False
else:
target_image_same = True if TARGET_IMAGE_LIST_HASH[i] == target_image_md5hash else False
if not target_image_same:
TARGET_IMAGE_LIST_HASH[i] = target_image_md5hash
logger.info("(Image %s) Target Image MD5 Hash = %s", i, TARGET_IMAGE_LIST_HASH[i])
logger.info("(Image %s) Target Image the Same? %s", i, target_image_same)
if len(TARGET_FACES_LIST) == 0:
logger.status(f"Analyzing Target Image {i}...")
target_face = analyze_faces(target_img)
TARGET_FACES_LIST = [target_face]
elif len(TARGET_FACES_LIST) == i and not target_image_same:
logger.status(f"Analyzing Target Image {i}...")
target_face = analyze_faces(target_img)
TARGET_FACES_LIST.append(target_face)
elif len(TARGET_FACES_LIST) != i and not target_image_same:
logger.status(f"Analyzing Target Image {i}...")
target_face = analyze_faces(target_img)
TARGET_FACES_LIST[i] = target_face
elif target_image_same:
logger.status("(Image %s) Using Hashed Target Face(s) Model...", i)
target_face = TARGET_FACES_LIST[i]
# logger.status(f"Analyzing Target Image {i}...")
# target_face = analyze_faces(target_img)
if target_face is not None:
target_faces.append(target_face)
# No use in trying to swap faces if no faces are found, enhancement
if len(target_faces) == 0:
logger.status("Cannot detect any Target, skipping swapping...")
return result_images
if source_img is not None:
# separated management of wrong_gender between source and target, enhancement
source_face, src_wrong_gender = get_face_single(source_img, source_faces, face_index=source_faces_index[0], gender_source=gender_source, order=faces_order[1])
else:
# source_face = sorted(source_faces, key=lambda x: x.bbox[0])[source_faces_index[0]]
source_face = sorted(source_faces, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]), reverse = True)[source_faces_index[0]]
src_wrong_gender = 0
if len(source_faces_index) != 0 and len(source_faces_index) != 1 and len(source_faces_index) != len(faces_index):
logger.status(f'Source Faces must have no entries (default=0), one entry, or same number of entries as target faces.')
elif source_face is not None:
results = target_imgs
model_path = model_path = os.path.join(insightface_path, model)
face_swapper = getFaceSwapModel(model_path)
source_face_idx = 0
for face_num in faces_index:
# No use in trying to swap faces if no further faces are found, enhancement
if face_num >= len(target_faces):
logger.status("Checked all existing target faces, skipping swapping...")
break
if len(source_faces_index) > 1 and source_face_idx > 0:
source_face, src_wrong_gender = get_face_single(source_img, source_faces, face_index=source_faces_index[source_face_idx], gender_source=gender_source, order=faces_order[1])
source_face_idx += 1
if source_face is not None and src_wrong_gender == 0:
# Reading results to make current face swap on a previous face result
for i, (target_img, target_face) in enumerate(zip(results, target_faces)):
target_face_single, wrong_gender = get_face_single(target_img, target_face, face_index=face_num, gender_target=gender_target, order=faces_order[0])
if target_face_single is not None and wrong_gender == 0:
result = target_img
logger.status(f"Swapping {i}...")
if face_boost_enabled:
logger.status(f"Face Boost is enabled")
bgr_fake, M = face_swapper.get(target_img, target_face_single, source_face, paste_back=False)
bgr_fake, scale = restorer.get_restored_face(bgr_fake, face_restore_model, face_restore_visibility, codeformer_weight, interpolation)
M *= scale
result = swapper.in_swap(target_img, bgr_fake, M)
else:
# logger.status(f"Swapping as-is")
result = face_swapper.get(target_img, target_face_single, source_face)
results[i] = result
elif wrong_gender == 1:
wrong_gender = 0
logger.status("Wrong target gender detected")
continue
else:
logger.status(f"No target face found for {face_num}")
elif src_wrong_gender == 1:
src_wrong_gender = 0
logger.status("Wrong source gender detected")
continue
else:
logger.status(f"No source face found for face number {source_face_idx}.")
result_images = [Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB)) for result in results]
else:
logger.status("No source face(s) in the provided Index")
else:
logger.status("No source face(s) found")
return result_images
|