|
import latent_preview |
|
import comfy |
|
import einops |
|
import torch |
|
|
|
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False): |
|
device = comfy.model_management.get_torch_device() |
|
latent_image = latent["samples"] |
|
|
|
if disable_noise: |
|
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu") |
|
else: |
|
batch_inds = latent["batch_index"] if "batch_index" in latent else None |
|
noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds) |
|
|
|
noise_mask = None |
|
if "noise_mask" in latent: |
|
noise_mask = latent["noise_mask"] |
|
|
|
preview_format = "JPEG" |
|
if preview_format not in ["JPEG", "PNG"]: |
|
preview_format = "JPEG" |
|
|
|
previewer = latent_preview.get_previewer(device, model.model.latent_format) |
|
|
|
pbar = comfy.utils.ProgressBar(steps) |
|
def callback(step, x0, x, total_steps): |
|
preview_bytes = None |
|
if previewer: |
|
preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0) |
|
pbar.update_absolute(step + 1, total_steps, preview_bytes) |
|
|
|
samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, |
|
denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step, |
|
force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, seed=seed) |
|
out = latent.copy() |
|
out["samples"] = samples |
|
return (out, ) |
|
|
|
class Gradually_More_Denoise_KSampler: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": |
|
{"model": ("MODEL",), |
|
"positive": ("CONDITIONING", ), |
|
"negative": ("CONDITIONING", ), |
|
"latent_image": ("LATENT", ), |
|
|
|
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), |
|
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), |
|
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}), |
|
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), |
|
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ), |
|
|
|
"start_denoise": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
"denoise_increment": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 1.0, "step": 0.1}), |
|
"denoise_increment_steps": ("INT", {"default": 20, "min": 1, "max": 10000}) |
|
}, |
|
"optional": { "optional_vae": ("VAE",) } |
|
} |
|
|
|
RETURN_TYPES = ("MODEL", "CONDITIONING", "CONDITIONING", "LATENT", "VAE", ) |
|
RETURN_NAMES = ("MODEL", "CONDITIONING+", "CONDITIONING-", "LATENT", "VAE", ) |
|
OUTPUT_NODE = True |
|
FUNCTION = "sample" |
|
CATEGORY = "ComfyUI-Frame-Interpolation/others" |
|
|
|
def sample(self, model, positive, negative, latent_image, optional_vae, |
|
seed, steps, cfg, sampler_name, scheduler,start_denoise, denoise_increment, denoise_increment_steps): |
|
if start_denoise + denoise_increment * denoise_increment_steps > 1.0: |
|
raise Exception(f"Max denoise strength can't over 1.0 (start_denoise={start_denoise}, denoise_increment={denoise_increment}, denoise_increment_steps={denoise_increment_steps}") |
|
|
|
copied_latent = latent_image.copy() |
|
out_samples = [] |
|
|
|
for latent_sample in copied_latent["samples"]: |
|
latent = {"samples": einops.rearrange(latent_sample, "c h w -> 1 c h w")} |
|
|
|
gradually_denoising_samples = [ |
|
common_ksampler( |
|
model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=start_denoise + denoise_increment * i |
|
)[0]["samples"] |
|
for i in range(denoise_increment_steps) |
|
] |
|
out_samples.extend(gradually_denoising_samples) |
|
|
|
copied_latent["samples"] = torch.cat(out_samples, dim=0) |
|
return (model, positive, negative, copied_latent, optional_vae) |