|
|
|
|
|
|
|
import argparse
|
|
import gc
|
|
import json
|
|
import math
|
|
import os
|
|
import random
|
|
import time
|
|
from multiprocessing import Value
|
|
from types import SimpleNamespace
|
|
import toml
|
|
|
|
from tqdm import tqdm
|
|
import torch
|
|
try:
|
|
import intel_extension_for_pytorch as ipex
|
|
if torch.xpu.is_available():
|
|
from library.ipex import ipex_init
|
|
ipex_init()
|
|
except Exception:
|
|
pass
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from accelerate.utils import set_seed
|
|
import accelerate
|
|
from diffusers import DDPMScheduler, ControlNetModel
|
|
from safetensors.torch import load_file
|
|
from library import sai_model_spec, sdxl_model_util, sdxl_original_unet, sdxl_train_util
|
|
|
|
import library.model_util as model_util
|
|
import library.train_util as train_util
|
|
import library.config_util as config_util
|
|
from library.config_util import (
|
|
ConfigSanitizer,
|
|
BlueprintGenerator,
|
|
)
|
|
import library.huggingface_util as huggingface_util
|
|
import library.custom_train_functions as custom_train_functions
|
|
from library.custom_train_functions import (
|
|
add_v_prediction_like_loss,
|
|
apply_snr_weight,
|
|
prepare_scheduler_for_custom_training,
|
|
pyramid_noise_like,
|
|
apply_noise_offset,
|
|
scale_v_prediction_loss_like_noise_prediction,
|
|
apply_debiased_estimation,
|
|
)
|
|
import networks.control_net_lllite_for_train as control_net_lllite_for_train
|
|
|
|
|
|
|
|
def generate_step_logs(args: argparse.Namespace, current_loss, avr_loss, lr_scheduler):
|
|
logs = {
|
|
"loss/current": current_loss,
|
|
"loss/average": avr_loss,
|
|
"lr": lr_scheduler.get_last_lr()[0],
|
|
}
|
|
|
|
if args.optimizer_type.lower().startswith("DAdapt".lower()):
|
|
logs["lr/d*lr"] = lr_scheduler.optimizers[-1].param_groups[0]["d"] * lr_scheduler.optimizers[-1].param_groups[0]["lr"]
|
|
|
|
return logs
|
|
|
|
|
|
def train(args):
|
|
train_util.verify_training_args(args)
|
|
train_util.prepare_dataset_args(args, True)
|
|
sdxl_train_util.verify_sdxl_training_args(args)
|
|
|
|
cache_latents = args.cache_latents
|
|
use_user_config = args.dataset_config is not None
|
|
|
|
if args.seed is None:
|
|
args.seed = random.randint(0, 2**32)
|
|
set_seed(args.seed)
|
|
|
|
tokenizer1, tokenizer2 = sdxl_train_util.load_tokenizers(args)
|
|
|
|
|
|
blueprint_generator = BlueprintGenerator(ConfigSanitizer(False, False, True, True))
|
|
if use_user_config:
|
|
print(f"Load dataset config from {args.dataset_config}")
|
|
user_config = config_util.load_user_config(args.dataset_config)
|
|
ignored = ["train_data_dir", "conditioning_data_dir"]
|
|
if any(getattr(args, attr) is not None for attr in ignored):
|
|
print(
|
|
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
|
|
", ".join(ignored)
|
|
)
|
|
)
|
|
else:
|
|
user_config = {
|
|
"datasets": [
|
|
{
|
|
"subsets": config_util.generate_controlnet_subsets_config_by_subdirs(
|
|
args.train_data_dir,
|
|
args.conditioning_data_dir,
|
|
args.caption_extension,
|
|
)
|
|
}
|
|
]
|
|
}
|
|
|
|
blueprint = blueprint_generator.generate(user_config, args, tokenizer=[tokenizer1, tokenizer2])
|
|
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
|
|
|
|
current_epoch = Value("i", 0)
|
|
current_step = Value("i", 0)
|
|
ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None
|
|
collator = train_util.collator_class(current_epoch, current_step, ds_for_collator)
|
|
|
|
train_dataset_group.verify_bucket_reso_steps(32)
|
|
|
|
if args.debug_dataset:
|
|
train_util.debug_dataset(train_dataset_group)
|
|
return
|
|
if len(train_dataset_group) == 0:
|
|
print(
|
|
"No data found. Please verify arguments (train_data_dir must be the parent of folders with images) / 画像がありません。引数指定を確認してください(train_data_dirには画像があるフォルダではなく、画像があるフォルダの親フォルダを指定する必要があります)"
|
|
)
|
|
return
|
|
|
|
if cache_latents:
|
|
assert (
|
|
train_dataset_group.is_latent_cacheable()
|
|
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"
|
|
else:
|
|
print("WARNING: random_crop is not supported yet for ControlNet training / ControlNetの学習ではrandom_cropはまだサポートされていません")
|
|
|
|
if args.cache_text_encoder_outputs:
|
|
assert (
|
|
train_dataset_group.is_text_encoder_output_cacheable()
|
|
), "when caching Text Encoder output, either caption_dropout_rate, shuffle_caption, token_warmup_step or caption_tag_dropout_rate cannot be used / Text Encoderの出力をキャッシュするときはcaption_dropout_rate, shuffle_caption, token_warmup_step, caption_tag_dropout_rateは使えません"
|
|
|
|
|
|
print("prepare accelerator")
|
|
accelerator = train_util.prepare_accelerator(args)
|
|
is_main_process = accelerator.is_main_process
|
|
|
|
|
|
weight_dtype, save_dtype = train_util.prepare_dtype(args)
|
|
vae_dtype = torch.float32 if args.no_half_vae else weight_dtype
|
|
|
|
|
|
(
|
|
load_stable_diffusion_format,
|
|
text_encoder1,
|
|
text_encoder2,
|
|
vae,
|
|
unet,
|
|
logit_scale,
|
|
ckpt_info,
|
|
) = sdxl_train_util.load_target_model(args, accelerator, sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, weight_dtype)
|
|
|
|
|
|
if cache_latents:
|
|
vae.to(accelerator.device, dtype=vae_dtype)
|
|
vae.requires_grad_(False)
|
|
vae.eval()
|
|
with torch.no_grad():
|
|
train_dataset_group.cache_latents(
|
|
vae,
|
|
args.vae_batch_size,
|
|
args.cache_latents_to_disk,
|
|
accelerator.is_main_process,
|
|
)
|
|
vae.to("cpu")
|
|
if torch.cuda.is_available():
|
|
torch.cuda.empty_cache()
|
|
gc.collect()
|
|
|
|
accelerator.wait_for_everyone()
|
|
|
|
|
|
if args.cache_text_encoder_outputs:
|
|
|
|
with torch.no_grad():
|
|
train_dataset_group.cache_text_encoder_outputs(
|
|
(tokenizer1, tokenizer2),
|
|
(text_encoder1, text_encoder2),
|
|
accelerator.device,
|
|
None,
|
|
args.cache_text_encoder_outputs_to_disk,
|
|
accelerator.is_main_process,
|
|
)
|
|
accelerator.wait_for_everyone()
|
|
|
|
|
|
control_net_lllite_for_train.replace_unet_linear_and_conv2d()
|
|
|
|
if args.network_weights is not None:
|
|
accelerator.print(f"initialize U-Net with ControlNet-LLLite")
|
|
with accelerate.init_empty_weights():
|
|
unet_lllite = control_net_lllite_for_train.SdxlUNet2DConditionModelControlNetLLLite()
|
|
unet_lllite.to(accelerator.device, dtype=weight_dtype)
|
|
|
|
unet_sd = unet.state_dict()
|
|
info = unet_lllite.load_lllite_weights(args.network_weights, unet_sd)
|
|
accelerator.print(f"load ControlNet-LLLite weights from {args.network_weights}: {info}")
|
|
else:
|
|
|
|
accelerator.print("sending U-Net to GPU")
|
|
unet.to(accelerator.device, dtype=weight_dtype)
|
|
unet_sd = unet.state_dict()
|
|
|
|
|
|
accelerator.print(f"initialize U-Net with ControlNet-LLLite")
|
|
|
|
if args.lowram:
|
|
with accelerate.init_on_device(accelerator.device):
|
|
unet_lllite = control_net_lllite_for_train.SdxlUNet2DConditionModelControlNetLLLite()
|
|
else:
|
|
unet_lllite = control_net_lllite_for_train.SdxlUNet2DConditionModelControlNetLLLite()
|
|
unet_lllite.to(weight_dtype)
|
|
|
|
info = unet_lllite.load_lllite_weights(None, unet_sd)
|
|
accelerator.print(f"init U-Net with ControlNet-LLLite weights: {info}")
|
|
del unet_sd, unet
|
|
|
|
unet: control_net_lllite_for_train.SdxlUNet2DConditionModelControlNetLLLite = unet_lllite
|
|
del unet_lllite
|
|
|
|
unet.apply_lllite(args.cond_emb_dim, args.network_dim, args.network_dropout)
|
|
|
|
|
|
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers, args.sdpa)
|
|
|
|
if args.gradient_checkpointing:
|
|
unet.enable_gradient_checkpointing()
|
|
|
|
|
|
accelerator.print("prepare optimizer, data loader etc.")
|
|
|
|
trainable_params = list(unet.prepare_params())
|
|
print(f"trainable params count: {len(trainable_params)}")
|
|
print(f"number of trainable parameters: {sum(p.numel() for p in trainable_params if p.requires_grad)}")
|
|
|
|
_, _, optimizer = train_util.get_optimizer(args, trainable_params)
|
|
|
|
|
|
|
|
n_workers = min(args.max_data_loader_n_workers, os.cpu_count() - 1)
|
|
|
|
train_dataloader = torch.utils.data.DataLoader(
|
|
train_dataset_group,
|
|
batch_size=1,
|
|
shuffle=True,
|
|
collate_fn=collator,
|
|
num_workers=n_workers,
|
|
persistent_workers=args.persistent_data_loader_workers,
|
|
)
|
|
|
|
|
|
if args.max_train_epochs is not None:
|
|
args.max_train_steps = args.max_train_epochs * math.ceil(
|
|
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
|
|
)
|
|
accelerator.print(f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}")
|
|
|
|
|
|
train_dataset_group.set_max_train_steps(args.max_train_steps)
|
|
|
|
|
|
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
unet.to(weight_dtype)
|
|
|
|
|
|
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(unet, optimizer, train_dataloader, lr_scheduler)
|
|
|
|
|
|
unet = train_util.transform_models_if_DDP([unet])[0]
|
|
|
|
if args.gradient_checkpointing:
|
|
unet.train()
|
|
else:
|
|
unet.eval()
|
|
|
|
|
|
if args.cache_text_encoder_outputs:
|
|
|
|
text_encoder1.to("cpu", dtype=torch.float32)
|
|
text_encoder2.to("cpu", dtype=torch.float32)
|
|
if torch.cuda.is_available():
|
|
torch.cuda.empty_cache()
|
|
else:
|
|
|
|
text_encoder1.to(accelerator.device)
|
|
text_encoder2.to(accelerator.device)
|
|
|
|
if not cache_latents:
|
|
vae.requires_grad_(False)
|
|
vae.eval()
|
|
vae.to(accelerator.device, dtype=vae_dtype)
|
|
|
|
|
|
if args.full_fp16:
|
|
train_util.patch_accelerator_for_fp16_training(accelerator)
|
|
|
|
|
|
train_util.resume_from_local_or_hf_if_specified(accelerator, args)
|
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
|
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
|
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
|
|
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
|
|
|
|
|
|
|
|
accelerator.print("running training / 学習開始")
|
|
accelerator.print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}")
|
|
accelerator.print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}")
|
|
accelerator.print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
|
|
accelerator.print(f" num epochs / epoch数: {num_train_epochs}")
|
|
accelerator.print(f" batch size per device / バッチサイズ: {', '.join([str(d.batch_size) for d in train_dataset_group.datasets])}")
|
|
|
|
accelerator.print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
|
|
accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
|
|
|
|
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
|
|
global_step = 0
|
|
|
|
noise_scheduler = DDPMScheduler(
|
|
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False
|
|
)
|
|
prepare_scheduler_for_custom_training(noise_scheduler, accelerator.device)
|
|
if args.zero_terminal_snr:
|
|
custom_train_functions.fix_noise_scheduler_betas_for_zero_terminal_snr(noise_scheduler)
|
|
|
|
if accelerator.is_main_process:
|
|
init_kwargs = {}
|
|
if args.log_tracker_config is not None:
|
|
init_kwargs = toml.load(args.log_tracker_config)
|
|
accelerator.init_trackers(
|
|
"lllite_control_net_train" if args.log_tracker_name is None else args.log_tracker_name, init_kwargs=init_kwargs
|
|
)
|
|
|
|
loss_recorder = train_util.LossRecorder()
|
|
del train_dataset_group
|
|
|
|
|
|
def save_model(
|
|
ckpt_name,
|
|
unwrapped_nw: control_net_lllite_for_train.SdxlUNet2DConditionModelControlNetLLLite,
|
|
steps,
|
|
epoch_no,
|
|
force_sync_upload=False,
|
|
):
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
ckpt_file = os.path.join(args.output_dir, ckpt_name)
|
|
|
|
accelerator.print(f"\nsaving checkpoint: {ckpt_file}")
|
|
sai_metadata = train_util.get_sai_model_spec(None, args, True, True, False)
|
|
sai_metadata["modelspec.architecture"] = sai_model_spec.ARCH_SD_XL_V1_BASE + "/control-net-lllite"
|
|
|
|
unwrapped_nw.save_lllite_weights(ckpt_file, save_dtype, sai_metadata)
|
|
if args.huggingface_repo_id is not None:
|
|
huggingface_util.upload(args, ckpt_file, "/" + ckpt_name, force_sync_upload=force_sync_upload)
|
|
|
|
def remove_model(old_ckpt_name):
|
|
old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name)
|
|
if os.path.exists(old_ckpt_file):
|
|
accelerator.print(f"removing old checkpoint: {old_ckpt_file}")
|
|
os.remove(old_ckpt_file)
|
|
|
|
|
|
for epoch in range(num_train_epochs):
|
|
accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}")
|
|
current_epoch.value = epoch + 1
|
|
|
|
for step, batch in enumerate(train_dataloader):
|
|
current_step.value = global_step
|
|
with accelerator.accumulate(unet):
|
|
with torch.no_grad():
|
|
if "latents" in batch and batch["latents"] is not None:
|
|
latents = batch["latents"].to(accelerator.device)
|
|
else:
|
|
|
|
latents = vae.encode(batch["images"].to(dtype=vae_dtype)).latent_dist.sample()
|
|
|
|
|
|
if torch.any(torch.isnan(latents)):
|
|
accelerator.print("NaN found in latents, replacing with zeros")
|
|
latents = torch.where(torch.isnan(latents), torch.zeros_like(latents), latents)
|
|
latents = latents * sdxl_model_util.VAE_SCALE_FACTOR
|
|
|
|
if "text_encoder_outputs1_list" not in batch or batch["text_encoder_outputs1_list"] is None:
|
|
input_ids1 = batch["input_ids"]
|
|
input_ids2 = batch["input_ids2"]
|
|
with torch.no_grad():
|
|
|
|
input_ids1 = input_ids1.to(accelerator.device)
|
|
input_ids2 = input_ids2.to(accelerator.device)
|
|
encoder_hidden_states1, encoder_hidden_states2, pool2 = train_util.get_hidden_states_sdxl(
|
|
args.max_token_length,
|
|
input_ids1,
|
|
input_ids2,
|
|
tokenizer1,
|
|
tokenizer2,
|
|
text_encoder1,
|
|
text_encoder2,
|
|
None if not args.full_fp16 else weight_dtype,
|
|
)
|
|
else:
|
|
encoder_hidden_states1 = batch["text_encoder_outputs1_list"].to(accelerator.device).to(weight_dtype)
|
|
encoder_hidden_states2 = batch["text_encoder_outputs2_list"].to(accelerator.device).to(weight_dtype)
|
|
pool2 = batch["text_encoder_pool2_list"].to(accelerator.device).to(weight_dtype)
|
|
|
|
|
|
orig_size = batch["original_sizes_hw"]
|
|
crop_size = batch["crop_top_lefts"]
|
|
target_size = batch["target_sizes_hw"]
|
|
embs = sdxl_train_util.get_size_embeddings(orig_size, crop_size, target_size, accelerator.device).to(weight_dtype)
|
|
|
|
|
|
vector_embedding = torch.cat([pool2, embs], dim=1).to(weight_dtype)
|
|
text_embedding = torch.cat([encoder_hidden_states1, encoder_hidden_states2], dim=2).to(weight_dtype)
|
|
|
|
|
|
|
|
noise, noisy_latents, timesteps = train_util.get_noise_noisy_latents_and_timesteps(args, noise_scheduler, latents)
|
|
|
|
noisy_latents = noisy_latents.to(weight_dtype)
|
|
|
|
controlnet_image = batch["conditioning_images"].to(dtype=weight_dtype)
|
|
|
|
with accelerator.autocast():
|
|
|
|
|
|
|
|
|
|
noise_pred = unet(noisy_latents, timesteps, text_embedding, vector_embedding, controlnet_image)
|
|
|
|
if args.v_parameterization:
|
|
|
|
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
|
else:
|
|
target = noise
|
|
|
|
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
|
|
loss = loss.mean([1, 2, 3])
|
|
|
|
loss_weights = batch["loss_weights"]
|
|
loss = loss * loss_weights
|
|
|
|
if args.min_snr_gamma:
|
|
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma)
|
|
if args.scale_v_pred_loss_like_noise_pred:
|
|
loss = scale_v_prediction_loss_like_noise_prediction(loss, timesteps, noise_scheduler)
|
|
if args.v_pred_like_loss:
|
|
loss = add_v_prediction_like_loss(loss, timesteps, noise_scheduler, args.v_pred_like_loss)
|
|
if args.debiased_estimation_loss:
|
|
loss = apply_debiased_estimation(loss, timesteps, noise_scheduler)
|
|
|
|
loss = loss.mean()
|
|
|
|
accelerator.backward(loss)
|
|
if accelerator.sync_gradients and args.max_grad_norm != 0.0:
|
|
params_to_clip = unet.get_trainable_params()
|
|
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
|
|
|
|
optimizer.step()
|
|
lr_scheduler.step()
|
|
optimizer.zero_grad(set_to_none=True)
|
|
|
|
|
|
if accelerator.sync_gradients:
|
|
progress_bar.update(1)
|
|
global_step += 1
|
|
|
|
|
|
|
|
|
|
if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0:
|
|
accelerator.wait_for_everyone()
|
|
if accelerator.is_main_process:
|
|
ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, global_step)
|
|
save_model(ckpt_name, accelerator.unwrap_model(unet), global_step, epoch)
|
|
|
|
if args.save_state:
|
|
train_util.save_and_remove_state_stepwise(args, accelerator, global_step)
|
|
|
|
remove_step_no = train_util.get_remove_step_no(args, global_step)
|
|
if remove_step_no is not None:
|
|
remove_ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, remove_step_no)
|
|
remove_model(remove_ckpt_name)
|
|
|
|
current_loss = loss.detach().item()
|
|
loss_recorder.add(epoch=epoch, step=step, loss=current_loss)
|
|
avr_loss: float = loss_recorder.moving_average
|
|
logs = {"avr_loss": avr_loss}
|
|
progress_bar.set_postfix(**logs)
|
|
|
|
if args.logging_dir is not None:
|
|
logs = generate_step_logs(args, current_loss, avr_loss, lr_scheduler)
|
|
accelerator.log(logs, step=global_step)
|
|
|
|
if global_step >= args.max_train_steps:
|
|
break
|
|
|
|
if args.logging_dir is not None:
|
|
logs = {"loss/epoch": loss_recorder.moving_average}
|
|
accelerator.log(logs, step=epoch + 1)
|
|
|
|
accelerator.wait_for_everyone()
|
|
|
|
|
|
if args.save_every_n_epochs is not None:
|
|
saving = (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs
|
|
if is_main_process and saving:
|
|
ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, epoch + 1)
|
|
save_model(ckpt_name, accelerator.unwrap_model(unet), global_step, epoch + 1)
|
|
|
|
remove_epoch_no = train_util.get_remove_epoch_no(args, epoch + 1)
|
|
if remove_epoch_no is not None:
|
|
remove_ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, remove_epoch_no)
|
|
remove_model(remove_ckpt_name)
|
|
|
|
if args.save_state:
|
|
train_util.save_and_remove_state_on_epoch_end(args, accelerator, epoch + 1)
|
|
|
|
|
|
|
|
|
|
|
|
if is_main_process:
|
|
unet = accelerator.unwrap_model(unet)
|
|
|
|
accelerator.end_training()
|
|
|
|
if is_main_process and args.save_state:
|
|
train_util.save_state_on_train_end(args, accelerator)
|
|
|
|
if is_main_process:
|
|
ckpt_name = train_util.get_last_ckpt_name(args, "." + args.save_model_as)
|
|
save_model(ckpt_name, unet, global_step, num_train_epochs, force_sync_upload=True)
|
|
|
|
print("model saved.")
|
|
|
|
|
|
def setup_parser() -> argparse.ArgumentParser:
|
|
parser = argparse.ArgumentParser()
|
|
|
|
train_util.add_sd_models_arguments(parser)
|
|
train_util.add_dataset_arguments(parser, False, True, True)
|
|
train_util.add_training_arguments(parser, False)
|
|
train_util.add_optimizer_arguments(parser)
|
|
config_util.add_config_arguments(parser)
|
|
custom_train_functions.add_custom_train_arguments(parser)
|
|
sdxl_train_util.add_sdxl_training_arguments(parser)
|
|
|
|
parser.add_argument(
|
|
"--save_model_as",
|
|
type=str,
|
|
default="safetensors",
|
|
choices=[None, "ckpt", "pt", "safetensors"],
|
|
help="format to save the model (default is .safetensors) / モデル保存時の形式(デフォルトはsafetensors)",
|
|
)
|
|
parser.add_argument("--cond_emb_dim", type=int, default=None, help="conditioning embedding dimension / 条件付け埋め込みの次元数")
|
|
parser.add_argument("--network_weights", type=str, default=None, help="pretrained weights for network / 学習するネットワークの初期重み")
|
|
parser.add_argument("--network_dim", type=int, default=None, help="network dimensions (rank) / モジュールの次元数")
|
|
parser.add_argument(
|
|
"--network_dropout",
|
|
type=float,
|
|
default=None,
|
|
help="Drops neurons out of training every step (0 or None is default behavior (no dropout), 1 would drop all neurons) / 訓練時に毎ステップでニューロンをdropする(0またはNoneはdropoutなし、1は全ニューロンをdropout)",
|
|
)
|
|
parser.add_argument(
|
|
"--conditioning_data_dir",
|
|
type=str,
|
|
default=None,
|
|
help="conditioning data directory / 条件付けデータのディレクトリ",
|
|
)
|
|
parser.add_argument(
|
|
"--no_half_vae",
|
|
action="store_true",
|
|
help="do not use fp16/bf16 VAE in mixed precision (use float VAE) / mixed precisionでも fp16/bf16 VAEを使わずfloat VAEを使う",
|
|
)
|
|
return parser
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
|
parser = setup_parser()
|
|
|
|
args = parser.parse_args()
|
|
args = train_util.read_config_from_file(args, parser)
|
|
|
|
train(args)
|
|
|