3v324v23's picture
lfs
1e3b872
raw
history blame
20.2 kB
import os,sys
import folder_paths
from PIL import Image
import importlib.util
import comfy.utils
import numpy as np
import torch
from huggingface_hub import hf_hub_download
import torch.nn as nn
import torch.nn.functional as F
from torchvision.transforms.functional import normalize
# BRIA-RMBG-1.4 / briarmbg.py
class REBNCONV(nn.Module):
def __init__(self,in_ch=3,out_ch=3,dirate=1,stride=1):
super(REBNCONV,self).__init__()
self.conv_s1 = nn.Conv2d(in_ch,out_ch,3,padding=1*dirate,dilation=1*dirate,stride=stride)
self.bn_s1 = nn.BatchNorm2d(out_ch)
self.relu_s1 = nn.ReLU(inplace=True)
def forward(self,x):
hx = x
xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))
return xout
## upsample tensor 'src' to have the same spatial size with tensor 'tar'
def _upsample_like(src,tar):
src = F.interpolate(src,size=tar.shape[2:],mode='bilinear')
return src
### RSU-7 ###
class RSU7(nn.Module):
def __init__(self, in_ch=3, mid_ch=12, out_ch=3, img_size=512):
super(RSU7,self).__init__()
self.in_ch = in_ch
self.mid_ch = mid_ch
self.out_ch = out_ch
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1) ## 1 -> 1/2
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
self.pool5 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=1)
self.rebnconv7 = REBNCONV(mid_ch,mid_ch,dirate=2)
self.rebnconv6d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
def forward(self,x):
b, c, h, w = x.shape
hx = x
hxin = self.rebnconvin(hx)
hx1 = self.rebnconv1(hxin)
hx = self.pool1(hx1)
hx2 = self.rebnconv2(hx)
hx = self.pool2(hx2)
hx3 = self.rebnconv3(hx)
hx = self.pool3(hx3)
hx4 = self.rebnconv4(hx)
hx = self.pool4(hx4)
hx5 = self.rebnconv5(hx)
hx = self.pool5(hx5)
hx6 = self.rebnconv6(hx)
hx7 = self.rebnconv7(hx6)
hx6d = self.rebnconv6d(torch.cat((hx7,hx6),1))
hx6dup = _upsample_like(hx6d,hx5)
hx5d = self.rebnconv5d(torch.cat((hx6dup,hx5),1))
hx5dup = _upsample_like(hx5d,hx4)
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
hx4dup = _upsample_like(hx4d,hx3)
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
hx3dup = _upsample_like(hx3d,hx2)
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
hx2dup = _upsample_like(hx2d,hx1)
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
return hx1d + hxin
### RSU-6 ###
class RSU6(nn.Module):
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
super(RSU6,self).__init__()
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=2)
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
def forward(self,x):
hx = x
hxin = self.rebnconvin(hx)
hx1 = self.rebnconv1(hxin)
hx = self.pool1(hx1)
hx2 = self.rebnconv2(hx)
hx = self.pool2(hx2)
hx3 = self.rebnconv3(hx)
hx = self.pool3(hx3)
hx4 = self.rebnconv4(hx)
hx = self.pool4(hx4)
hx5 = self.rebnconv5(hx)
hx6 = self.rebnconv6(hx5)
hx5d = self.rebnconv5d(torch.cat((hx6,hx5),1))
hx5dup = _upsample_like(hx5d,hx4)
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
hx4dup = _upsample_like(hx4d,hx3)
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
hx3dup = _upsample_like(hx3d,hx2)
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
hx2dup = _upsample_like(hx2d,hx1)
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
return hx1d + hxin
### RSU-5 ###
class RSU5(nn.Module):
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
super(RSU5,self).__init__()
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=2)
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
def forward(self,x):
hx = x
hxin = self.rebnconvin(hx)
hx1 = self.rebnconv1(hxin)
hx = self.pool1(hx1)
hx2 = self.rebnconv2(hx)
hx = self.pool2(hx2)
hx3 = self.rebnconv3(hx)
hx = self.pool3(hx3)
hx4 = self.rebnconv4(hx)
hx5 = self.rebnconv5(hx4)
hx4d = self.rebnconv4d(torch.cat((hx5,hx4),1))
hx4dup = _upsample_like(hx4d,hx3)
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
hx3dup = _upsample_like(hx3d,hx2)
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
hx2dup = _upsample_like(hx2d,hx1)
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
return hx1d + hxin
### RSU-4 ###
class RSU4(nn.Module):
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
super(RSU4,self).__init__()
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=2)
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
def forward(self,x):
hx = x
hxin = self.rebnconvin(hx)
hx1 = self.rebnconv1(hxin)
hx = self.pool1(hx1)
hx2 = self.rebnconv2(hx)
hx = self.pool2(hx2)
hx3 = self.rebnconv3(hx)
hx4 = self.rebnconv4(hx3)
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
hx3dup = _upsample_like(hx3d,hx2)
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
hx2dup = _upsample_like(hx2d,hx1)
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
return hx1d + hxin
### RSU-4F ###
class RSU4F(nn.Module):
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
super(RSU4F,self).__init__()
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=2)
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=4)
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=8)
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=4)
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=2)
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
def forward(self,x):
hx = x
hxin = self.rebnconvin(hx)
hx1 = self.rebnconv1(hxin)
hx2 = self.rebnconv2(hx1)
hx3 = self.rebnconv3(hx2)
hx4 = self.rebnconv4(hx3)
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
hx2d = self.rebnconv2d(torch.cat((hx3d,hx2),1))
hx1d = self.rebnconv1d(torch.cat((hx2d,hx1),1))
return hx1d + hxin
class myrebnconv(nn.Module):
def __init__(self, in_ch=3,
out_ch=1,
kernel_size=3,
stride=1,
padding=1,
dilation=1,
groups=1):
super(myrebnconv,self).__init__()
self.conv = nn.Conv2d(in_ch,
out_ch,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups)
self.bn = nn.BatchNorm2d(out_ch)
self.rl = nn.ReLU(inplace=True)
def forward(self,x):
return self.rl(self.bn(self.conv(x)))
class BriaRMBG(nn.Module):
def __init__(self,in_ch=3,out_ch=1):
super(BriaRMBG,self).__init__()
self.conv_in = nn.Conv2d(in_ch,64,3,stride=2,padding=1)
self.pool_in = nn.MaxPool2d(2,stride=2,ceil_mode=True)
self.stage1 = RSU7(64,32,64)
self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
self.stage2 = RSU6(64,32,128)
self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
self.stage3 = RSU5(128,64,256)
self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
self.stage4 = RSU4(256,128,512)
self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
self.stage5 = RSU4F(512,256,512)
self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
self.stage6 = RSU4F(512,256,512)
# decoder
self.stage5d = RSU4F(1024,256,512)
self.stage4d = RSU4(1024,128,256)
self.stage3d = RSU5(512,64,128)
self.stage2d = RSU6(256,32,64)
self.stage1d = RSU7(128,16,64)
self.side1 = nn.Conv2d(64,out_ch,3,padding=1)
self.side2 = nn.Conv2d(64,out_ch,3,padding=1)
self.side3 = nn.Conv2d(128,out_ch,3,padding=1)
self.side4 = nn.Conv2d(256,out_ch,3,padding=1)
self.side5 = nn.Conv2d(512,out_ch,3,padding=1)
self.side6 = nn.Conv2d(512,out_ch,3,padding=1)
# self.outconv = nn.Conv2d(6*out_ch,out_ch,1)
def forward(self,x):
hx = x
hxin = self.conv_in(hx)
#hx = self.pool_in(hxin)
#stage 1
hx1 = self.stage1(hxin)
hx = self.pool12(hx1)
#stage 2
hx2 = self.stage2(hx)
hx = self.pool23(hx2)
#stage 3
hx3 = self.stage3(hx)
hx = self.pool34(hx3)
#stage 4
hx4 = self.stage4(hx)
hx = self.pool45(hx4)
#stage 5
hx5 = self.stage5(hx)
hx = self.pool56(hx5)
#stage 6
hx6 = self.stage6(hx)
hx6up = _upsample_like(hx6,hx5)
#-------------------- decoder --------------------
hx5d = self.stage5d(torch.cat((hx6up,hx5),1))
hx5dup = _upsample_like(hx5d,hx4)
hx4d = self.stage4d(torch.cat((hx5dup,hx4),1))
hx4dup = _upsample_like(hx4d,hx3)
hx3d = self.stage3d(torch.cat((hx4dup,hx3),1))
hx3dup = _upsample_like(hx3d,hx2)
hx2d = self.stage2d(torch.cat((hx3dup,hx2),1))
hx2dup = _upsample_like(hx2d,hx1)
hx1d = self.stage1d(torch.cat((hx2dup,hx1),1))
#side output
d1 = self.side1(hx1d)
d1 = _upsample_like(d1,x)
d2 = self.side2(hx2d)
d2 = _upsample_like(d2,x)
d3 = self.side3(hx3d)
d3 = _upsample_like(d3,x)
d4 = self.side4(hx4d)
d4 = _upsample_like(d4,x)
d5 = self.side5(hx5d)
d5 = _upsample_like(d5,x)
d6 = self.side6(hx6)
d6 = _upsample_like(d6,x)
return [F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)],[hx1d,hx2d,hx3d,hx4d,hx5d,hx6]
def get_U2NET_model_path():
try:
return folder_paths.get_folder_paths('rembg')[0]
except:
return os.path.join(folder_paths.models_dir, "rembg")
U2NET_HOME=get_U2NET_model_path()
os.environ["U2NET_HOME"] = U2NET_HOME
global _available
_available=False
def get_rembg_models(path):
"""从目录中获取文件并提取文件名
Args:
path: 目录路径
Returns:
文件名列表
"""
filenames = []
for root, _, files in os.walk(path):
for filename in files:
# 过滤隐藏文件
if not filename.startswith('.'):
name, ext = os.path.splitext(os.path.basename(filename))
filenames.append(name)
return filenames
def is_installed(package):
try:
spec = importlib.util.find_spec(package)
except ModuleNotFoundError:
return False
return spec is not None
try:
if is_installed('rembg')==False:
import subprocess
# 安装
print('#pip install rembg[gpu]')
result = subprocess.run([sys.executable, '-s', '-m', 'pip', 'install', 'rembg[gpu]'], capture_output=True, text=True)
#检查命令执行结果
if result.returncode == 0:
print("#install success")
from rembg import new_session, remove
_available=True
else:
print("#install error")
else:
from rembg import new_session, remove
_available=True
except:
_available=False
def run_briarmbg(images=[]):
mroot=U2NET_HOME
m=os.path.join(mroot,'briarmbg.pth')
if os.path.exists(m)==False:
# 下载
m1=hf_hub_download("briaai/RMBG-1.4",
local_dir=mroot,
filename='model.pth',
local_dir_use_symlinks=False,
endpoint='https://hf-mirror.com')
os.rename(m1, m)
net=BriaRMBG()
if torch.cuda.is_available():
net.load_state_dict(torch.load(m))
net=net.cuda()
else:
net.load_state_dict(torch.load(m,map_location="cpu"))
net.eval()
masks=[]
rgba_images=[]
rgb_images=[]
for orig_image in images:
w,h = orig_im_size = orig_image.size
image = orig_image.convert('RGB')
model_input_size = (1024, 1024)
image = image.resize(model_input_size, Image.BILINEAR)
im_np = np.array(image)
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2,0,1)
im_tensor = torch.unsqueeze(im_tensor,0)
im_tensor = torch.divide(im_tensor,255.0)
im_tensor = normalize(im_tensor,[0.5,0.5,0.5],[1.0,1.0,1.0])
if torch.cuda.is_available():
im_tensor=im_tensor.cuda()
result=net(im_tensor)
result = torch.squeeze(F.interpolate(result[0][0], size=(h,w), mode='bilinear') ,0)
ma = torch.max(result)
mi = torch.min(result)
result = (result-mi)/(ma-mi)
im_array = (result*255).cpu().data.numpy().astype(np.uint8)
mask = Image.fromarray(np.squeeze(im_array))
# mask.save('test.png')
# mask=tensor2pil(result)
mask=mask.convert('L')
masks.append(mask)
# rgba图
image_rgba =orig_image.convert("RGBA")
image_rgba.putalpha(mask)
rgba_images.append(image_rgba)
#rgb
rgb_image = Image.new("RGB", image_rgba.size, (0, 0, 0))
rgb_image.paste(image_rgba, mask=image_rgba.split()[3])
rgb_images.append(rgb_image)
return (masks,rgba_images,rgb_images)
def run_rembg(model_name= "unet",images=[],callback=None):
# model_name = "unet" # "isnet-general-use"
# print('#run_rembg',model_name)
rembg_session = new_session(model_name)
masks=[]
rgba_images=[]
rgb_images=[]
# 进度条
pbar=callback
for img in images:
# use the post_process_mask argument to post process the mask to get better results.
mask = remove(img, session=rembg_session,only_mask=True,post_process_mask=True)
# mask=mask.convert('L')
# masks.append(mask)
if model_name=="u2net_cloth_seg":
width, original_height = mask.size
num_slices = original_height // img.height
for i in range(num_slices):
top = i * img.height
bottom = (i + 1) * img.height
slice_image = mask.crop((0, top, width, bottom))
slice_mask=slice_image.convert('L')
masks.append(slice_mask)
# rgba图
image_rgba = img.convert("RGBA")
image_rgba.putalpha(slice_mask)
rgba_images.append(image_rgba)
#rgb
rgb_image = Image.new("RGB", image_rgba.size, (0, 0, 0))
rgb_image.paste(image_rgba, mask=image_rgba.split()[3])
rgb_images.append(rgb_image)
else:
mask=mask.convert('L')
# mask.save(output_path)
masks.append(mask)
# rgba图
image_rgba = img.convert("RGBA")
image_rgba.putalpha(mask)
rgba_images.append(image_rgba)
#rgb
rgb_image = Image.new("RGB", image_rgba.size, (0, 0, 0))
rgb_image.paste(image_rgba, mask=image_rgba.split()[3])
rgb_images.append(rgb_image)
if pbar:
pbar.update(1)
return (masks,rgba_images,rgb_images)
# Tensor to PIL
def tensor2pil(image):
return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))
# Convert PIL to Tensor
def pil2tensor(image):
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)
class RembgNode_:
global _available
available=_available
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image": ("IMAGE",),
"model_name": (get_rembg_models(U2NET_HOME),),
},
}
RETURN_TYPES = ("MASK","IMAGE","RGBA",)
RETURN_NAMES = ("masks","images","RGBAs")
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Mask"
OUTPUT_NODE = True
INPUT_IS_LIST = True
OUTPUT_IS_LIST = (True,True,True,)
def run(self,image,model_name):
# 兼容list输入和batch输入
model_name=model_name[0]
images=[]
for ims in image:
for im in ims:
im=tensor2pil(im)
images.append(im)
if model_name=='briarmbg':
masks,rgba_images,rgb_images=run_briarmbg(images)
else:
masks,rgba_images,rgb_images=run_rembg(model_name,images, comfy.utils.ProgressBar(len(images) ))
masks=[pil2tensor(m) for m in masks]
rgba_images=[pil2tensor(m) for m in rgba_images]
rgb_images=[pil2tensor(m) for m in rgb_images]
return (masks,rgb_images,rgba_images,)