|
import traceback |
|
|
|
import comfy |
|
import nodes |
|
import torch |
|
import re |
|
|
|
from . import prompt_support |
|
from .libs import utils, common |
|
|
|
|
|
class RegionalPromptSimple: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"basic_pipe": ("BASIC_PIPE",), |
|
"mask": ("MASK",), |
|
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}), |
|
"sampler_name": (comfy.samplers.KSampler.SAMPLERS,), |
|
"scheduler": (common.SCHEDULERS,), |
|
"wildcard_prompt": ("STRING", {"multiline": True, "dynamicPrompts": False, "placeholder": "wildcard prompt"}), |
|
"controlnet_in_pipe": ("BOOLEAN", {"default": False, "label_on": "Keep", "label_off": "Override"}), |
|
"sigma_factor": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
}, |
|
"optional": { |
|
"variation_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), |
|
"variation_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
"variation_method": (["linear", "slerp"],), |
|
"scheduler_func_opt": ("SCHEDULER_FUNC",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("REGIONAL_PROMPTS", ) |
|
FUNCTION = "doit" |
|
|
|
CATEGORY = "InspirePack/Regional" |
|
|
|
@staticmethod |
|
def doit(basic_pipe, mask, cfg, sampler_name, scheduler, wildcard_prompt, |
|
controlnet_in_pipe=False, sigma_factor=1.0, variation_seed=0, variation_strength=0.0, variation_method='linear', scheduler_func_opt=None): |
|
if 'RegionalPrompt' not in nodes.NODE_CLASS_MAPPINGS: |
|
utils.try_install_custom_node('https://github.com/ltdrdata/ComfyUI-Impact-Pack', |
|
"To use 'RegionalPromptSimple' node, 'Impact Pack' extension is required.") |
|
raise Exception(f"[ERROR] To use RegionalPromptSimple, you need to install 'ComfyUI-Impact-Pack'") |
|
|
|
model, clip, vae, positive, negative = basic_pipe |
|
|
|
iwe = nodes.NODE_CLASS_MAPPINGS['ImpactWildcardEncode']() |
|
kap = nodes.NODE_CLASS_MAPPINGS['KSamplerAdvancedProvider']() |
|
rp = nodes.NODE_CLASS_MAPPINGS['RegionalPrompt']() |
|
|
|
if wildcard_prompt != "": |
|
model, clip, new_positive, _ = iwe.doit(model=model, clip=clip, populated_text=wildcard_prompt, seed=None) |
|
|
|
if controlnet_in_pipe: |
|
prev_cnet = None |
|
for t in positive: |
|
if 'control' in t[1] and 'control_apply_to_uncond' in t[1]: |
|
prev_cnet = t[1]['control'], t[1]['control_apply_to_uncond'] |
|
break |
|
|
|
if prev_cnet is not None: |
|
for t in new_positive: |
|
t[1]['control'] = prev_cnet[0] |
|
t[1]['control_apply_to_uncond'] = prev_cnet[1] |
|
|
|
else: |
|
new_positive = positive |
|
|
|
basic_pipe = model, clip, vae, new_positive, negative |
|
|
|
sampler = kap.doit(cfg, sampler_name, scheduler, basic_pipe, sigma_factor=sigma_factor, scheduler_func_opt=scheduler_func_opt)[0] |
|
try: |
|
regional_prompts = rp.doit(mask, sampler, variation_seed=variation_seed, variation_strength=variation_strength, variation_method=variation_method)[0] |
|
except: |
|
raise Exception("[Inspire-Pack] ERROR: Impact Pack is outdated. Update Impact Pack to latest version to use this.") |
|
|
|
return (regional_prompts, ) |
|
|
|
|
|
def color_to_mask(color_mask, mask_color): |
|
try: |
|
if mask_color.startswith("#"): |
|
selected = int(mask_color[1:], 16) |
|
else: |
|
selected = int(mask_color, 10) |
|
except Exception: |
|
raise Exception(f"[ERROR] Invalid mask_color value. mask_color should be a color value for RGB") |
|
|
|
temp = (torch.clamp(color_mask, 0, 1.0) * 255.0).round().to(torch.int) |
|
temp = torch.bitwise_left_shift(temp[:, :, :, 0], 16) + torch.bitwise_left_shift(temp[:, :, :, 1], 8) + temp[:, :, :, 2] |
|
mask = torch.where(temp == selected, 1.0, 0.0) |
|
return mask |
|
|
|
|
|
class RegionalPromptColorMask: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"basic_pipe": ("BASIC_PIPE",), |
|
"color_mask": ("IMAGE",), |
|
"mask_color": ("STRING", {"multiline": False, "default": "#FFFFFF"}), |
|
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}), |
|
"sampler_name": (comfy.samplers.KSampler.SAMPLERS,), |
|
"scheduler": (common.SCHEDULERS,), |
|
"wildcard_prompt": ("STRING", {"multiline": True, "dynamicPrompts": False, "placeholder": "wildcard prompt"}), |
|
"controlnet_in_pipe": ("BOOLEAN", {"default": False, "label_on": "Keep", "label_off": "Override"}), |
|
"sigma_factor": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
}, |
|
"optional": { |
|
"variation_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), |
|
"variation_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
"variation_method": (["linear", "slerp"],), |
|
"scheduler_func_opt": ("SCHEDULER_FUNC",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("REGIONAL_PROMPTS", "MASK") |
|
FUNCTION = "doit" |
|
|
|
CATEGORY = "InspirePack/Regional" |
|
|
|
@staticmethod |
|
def doit(basic_pipe, color_mask, mask_color, cfg, sampler_name, scheduler, wildcard_prompt, |
|
controlnet_in_pipe=False, sigma_factor=1.0, variation_seed=0, variation_strength=0.0, variation_method="linear", scheduler_func_opt=None): |
|
mask = color_to_mask(color_mask, mask_color) |
|
rp = RegionalPromptSimple().doit(basic_pipe, mask, cfg, sampler_name, scheduler, wildcard_prompt, controlnet_in_pipe, |
|
sigma_factor=sigma_factor, variation_seed=variation_seed, variation_strength=variation_strength, variation_method=variation_method, scheduler_func_opt=scheduler_func_opt)[0] |
|
return rp, mask |
|
|
|
|
|
class RegionalConditioningSimple: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"clip": ("CLIP", ), |
|
"mask": ("MASK",), |
|
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"set_cond_area": (["default", "mask bounds"],), |
|
"prompt": ("STRING", {"multiline": True, "placeholder": "prompt"}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("CONDITIONING", ) |
|
FUNCTION = "doit" |
|
|
|
CATEGORY = "InspirePack/Regional" |
|
|
|
@staticmethod |
|
def doit(clip, mask, strength, set_cond_area, prompt): |
|
conditioning = nodes.CLIPTextEncode().encode(clip, prompt)[0] |
|
conditioning = nodes.ConditioningSetMask().append(conditioning, mask, set_cond_area, strength)[0] |
|
return (conditioning, ) |
|
|
|
|
|
class RegionalConditioningColorMask: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"clip": ("CLIP", ), |
|
"color_mask": ("IMAGE",), |
|
"mask_color": ("STRING", {"multiline": False, "default": "#FFFFFF"}), |
|
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"set_cond_area": (["default", "mask bounds"],), |
|
"prompt": ("STRING", {"multiline": True, "placeholder": "prompt"}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("CONDITIONING", "MASK") |
|
FUNCTION = "doit" |
|
|
|
CATEGORY = "InspirePack/Regional" |
|
|
|
@staticmethod |
|
def doit(clip, color_mask, mask_color, strength, set_cond_area, prompt): |
|
mask = color_to_mask(color_mask, mask_color) |
|
|
|
conditioning = nodes.CLIPTextEncode().encode(clip, prompt)[0] |
|
conditioning = nodes.ConditioningSetMask().append(conditioning, mask, set_cond_area, strength)[0] |
|
return conditioning, mask |
|
|
|
|
|
class ToIPAdapterPipe: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"ipadapter": ("IPADAPTER", ), |
|
"model": ("MODEL",), |
|
}, |
|
"optional": { |
|
"clip_vision": ("CLIP_VISION",), |
|
"insightface": ("INSIGHTFACE",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IPADAPTER_PIPE",) |
|
FUNCTION = "doit" |
|
|
|
CATEGORY = "InspirePack/Util" |
|
|
|
@staticmethod |
|
def doit(ipadapter, model, clip_vision, insightface=None): |
|
pipe = ipadapter, model, clip_vision, insightface, lambda x: x |
|
|
|
return (pipe,) |
|
|
|
|
|
class FromIPAdapterPipe: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"ipadapter_pipe": ("IPADAPTER_PIPE", ), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IPADAPTER", "MODEL", "CLIP_VISION", "INSIGHTFACE") |
|
RETURN_NAMES = ("ipadapter", "model", "clip_vision", "insight_face") |
|
FUNCTION = "doit" |
|
|
|
CATEGORY = "InspirePack/Util" |
|
|
|
def doit(self, ipadapter_pipe): |
|
ipadapter, model, clip_vision, insightface, _ = ipadapter_pipe |
|
return ipadapter, model, clip_vision, insightface |
|
|
|
|
|
class IPAdapterConditioning: |
|
def __init__(self, mask, weight, weight_type, noise=None, image=None, neg_image=None, embeds=None, start_at=0.0, end_at=1.0, combine_embeds='concat', unfold_batch=False, weight_v2=False, neg_embeds=None): |
|
self.mask = mask |
|
self.image = image |
|
self.neg_image = neg_image |
|
self.embeds = embeds |
|
self.neg_embeds = neg_embeds |
|
self.weight = weight |
|
self.noise = noise |
|
self.weight_type = weight_type |
|
self.start_at = start_at |
|
self.end_at = end_at |
|
self.unfold_batch = unfold_batch |
|
self.weight_v2 = weight_v2 |
|
self.combine_embeds = combine_embeds |
|
|
|
def doit(self, ipadapter_pipe): |
|
ipadapter, model, clip_vision, insightface, _ = ipadapter_pipe |
|
|
|
if 'IPAdapterAdvanced' not in nodes.NODE_CLASS_MAPPINGS: |
|
utils.try_install_custom_node('https://github.com/cubiq/ComfyUI_IPAdapter_plus', |
|
"To use 'Regional IPAdapter' node, 'ComfyUI IPAdapter Plus' extension is required.") |
|
raise Exception(f"[ERROR] To use IPAdapterModelHelper, you need to install 'ComfyUI IPAdapter Plus'") |
|
|
|
if self.embeds is None: |
|
obj = nodes.NODE_CLASS_MAPPINGS['IPAdapterAdvanced'] |
|
model = obj().apply_ipadapter(model=model, ipadapter=ipadapter, weight=self.weight, weight_type=self.weight_type, |
|
start_at=self.start_at, end_at=self.end_at, combine_embeds=self.combine_embeds, |
|
clip_vision=clip_vision, image=self.image, image_negative=self.neg_image, attn_mask=self.mask, |
|
insightface=insightface, weight_faceidv2=self.weight_v2)[0] |
|
else: |
|
obj = nodes.NODE_CLASS_MAPPINGS['IPAdapterEmbeds'] |
|
model = obj().apply_ipadapter(model=model, ipadapter=ipadapter, pos_embed=self.embeds, weight=self.weight, weight_type=self.weight_type, |
|
start_at=self.start_at, end_at=self.end_at, neg_embed=self.neg_embeds, |
|
attn_mask=self.mask, clip_vision=clip_vision)[0] |
|
|
|
return model |
|
|
|
|
|
class RegionalIPAdapterMask: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"mask": ("MASK",), |
|
|
|
"image": ("IMAGE",), |
|
"weight": ("FLOAT", {"default": 0.7, "min": -1, "max": 3, "step": 0.05}), |
|
"noise": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
"weight_type": (["original", "linear", "channel penalty"],), |
|
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
"unfold_batch": ("BOOLEAN", {"default": False}), |
|
}, |
|
"optional": { |
|
"faceid_v2": ("BOOLEAN", {"default": False}), |
|
"weight_v2": ("FLOAT", {"default": 1.0, "min": -1, "max": 3, "step": 0.05}), |
|
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"],), |
|
"neg_image": ("IMAGE",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("REGIONAL_IPADAPTER", ) |
|
FUNCTION = "doit" |
|
|
|
CATEGORY = "InspirePack/Regional" |
|
|
|
@staticmethod |
|
def doit(mask, image, weight, noise, weight_type, start_at=0.0, end_at=1.0, unfold_batch=False, faceid_v2=False, weight_v2=False, combine_embeds="concat", neg_image=None): |
|
cond = IPAdapterConditioning(mask, weight, weight_type, noise=noise, image=image, neg_image=neg_image, start_at=start_at, end_at=end_at, unfold_batch=unfold_batch, weight_v2=weight_v2, combine_embeds=combine_embeds) |
|
return (cond, ) |
|
|
|
|
|
class RegionalIPAdapterColorMask: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"color_mask": ("IMAGE",), |
|
"mask_color": ("STRING", {"multiline": False, "default": "#FFFFFF"}), |
|
|
|
"image": ("IMAGE",), |
|
"weight": ("FLOAT", {"default": 0.7, "min": -1, "max": 3, "step": 0.05}), |
|
"noise": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
"weight_type": (["original", "linear", "channel penalty"], ), |
|
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
"unfold_batch": ("BOOLEAN", {"default": False}), |
|
}, |
|
"optional": { |
|
"faceid_v2": ("BOOLEAN", {"default": False }), |
|
"weight_v2": ("FLOAT", {"default": 1.0, "min": -1, "max": 3, "step": 0.05}), |
|
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"],), |
|
"neg_image": ("IMAGE",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("REGIONAL_IPADAPTER", "MASK") |
|
FUNCTION = "doit" |
|
|
|
CATEGORY = "InspirePack/Regional" |
|
|
|
@staticmethod |
|
def doit(color_mask, mask_color, image, weight, noise, weight_type, start_at=0.0, end_at=1.0, unfold_batch=False, faceid_v2=False, weight_v2=False, combine_embeds="concat", neg_image=None): |
|
mask = color_to_mask(color_mask, mask_color) |
|
cond = IPAdapterConditioning(mask, weight, weight_type, noise=noise, image=image, neg_image=neg_image, start_at=start_at, end_at=end_at, unfold_batch=unfold_batch, weight_v2=weight_v2, combine_embeds=combine_embeds) |
|
return (cond, mask) |
|
|
|
|
|
class RegionalIPAdapterEncodedMask: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"mask": ("MASK",), |
|
|
|
"embeds": ("EMBEDS",), |
|
"weight": ("FLOAT", {"default": 0.7, "min": -1, "max": 3, "step": 0.05}), |
|
"weight_type": (["original", "linear", "channel penalty"],), |
|
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
"unfold_batch": ("BOOLEAN", {"default": False}), |
|
}, |
|
"optional": { |
|
"neg_embeds": ("EMBEDS",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("REGIONAL_IPADAPTER", ) |
|
FUNCTION = "doit" |
|
|
|
CATEGORY = "InspirePack/Regional" |
|
|
|
@staticmethod |
|
def doit(mask, embeds, weight, weight_type, start_at=0.0, end_at=1.0, unfold_batch=False, neg_embeds=None): |
|
cond = IPAdapterConditioning(mask, weight, weight_type, embeds=embeds, start_at=start_at, end_at=end_at, unfold_batch=unfold_batch, neg_embeds=neg_embeds) |
|
return (cond, ) |
|
|
|
|
|
class RegionalIPAdapterEncodedColorMask: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"color_mask": ("IMAGE",), |
|
"mask_color": ("STRING", {"multiline": False, "default": "#FFFFFF"}), |
|
|
|
"embeds": ("EMBEDS",), |
|
"weight": ("FLOAT", {"default": 0.7, "min": -1, "max": 3, "step": 0.05}), |
|
"weight_type": (["original", "linear", "channel penalty"],), |
|
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
"unfold_batch": ("BOOLEAN", {"default": False}), |
|
}, |
|
"optional": { |
|
"neg_embeds": ("EMBEDS",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("REGIONAL_IPADAPTER", "MASK") |
|
FUNCTION = "doit" |
|
|
|
CATEGORY = "InspirePack/Regional" |
|
|
|
@staticmethod |
|
def doit(color_mask, mask_color, embeds, weight, weight_type, start_at=0.0, end_at=1.0, unfold_batch=False, neg_embeds=None): |
|
mask = color_to_mask(color_mask, mask_color) |
|
cond = IPAdapterConditioning(mask, weight, weight_type, embeds=embeds, start_at=start_at, end_at=end_at, unfold_batch=unfold_batch, neg_embeds=neg_embeds) |
|
return (cond, mask) |
|
|
|
|
|
class ApplyRegionalIPAdapters: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"ipadapter_pipe": ("IPADAPTER_PIPE",), |
|
"regional_ipadapter1": ("REGIONAL_IPADAPTER", ), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("MODEL", ) |
|
FUNCTION = "doit" |
|
|
|
CATEGORY = "InspirePack/Regional" |
|
|
|
@staticmethod |
|
def doit(**kwargs): |
|
ipadapter_pipe = kwargs['ipadapter_pipe'] |
|
ipadapter, model, clip_vision, insightface, lora_loader = ipadapter_pipe |
|
|
|
del kwargs['ipadapter_pipe'] |
|
|
|
for k, v in kwargs.items(): |
|
ipadapter_pipe = ipadapter, model, clip_vision, insightface, lora_loader |
|
model = v.doit(ipadapter_pipe) |
|
|
|
return (model, ) |
|
|
|
|
|
class RegionalSeedExplorerMask: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"mask": ("MASK",), |
|
|
|
"noise": ("NOISE",), |
|
"seed_prompt": ("STRING", {"multiline": True, "dynamicPrompts": False, "pysssss.autocomplete": False}), |
|
"enable_additional": ("BOOLEAN", {"default": True, "label_on": "true", "label_off": "false"}), |
|
"additional_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), |
|
"additional_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
"noise_mode": (["GPU(=A1111)", "CPU"],), |
|
}, |
|
"optional": |
|
{"variation_method": (["linear", "slerp"],), } |
|
} |
|
|
|
RETURN_TYPES = ("NOISE",) |
|
FUNCTION = "doit" |
|
|
|
CATEGORY = "InspirePack/Regional" |
|
|
|
@staticmethod |
|
def doit(mask, noise, seed_prompt, enable_additional, additional_seed, additional_strength, noise_mode, variation_method='linear'): |
|
device = comfy.model_management.get_torch_device() |
|
noise_device = "cpu" if noise_mode == "CPU" else device |
|
|
|
noise = noise.to(device) |
|
mask = mask.to(device) |
|
|
|
if len(mask.shape) == 2: |
|
mask = mask.unsqueeze(0) |
|
|
|
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(noise.shape[2], noise.shape[3]), mode="bilinear").squeeze(0) |
|
|
|
try: |
|
seed_prompt = seed_prompt.replace("\n", "") |
|
items = seed_prompt.strip().split(",") |
|
|
|
if items == ['']: |
|
items = [] |
|
|
|
if enable_additional: |
|
items.append((additional_seed, additional_strength)) |
|
|
|
noise = prompt_support.SeedExplorer.apply_variation(noise, items, noise_device, mask, variation_method=variation_method) |
|
except Exception: |
|
print(f"[ERROR] IGNORED: RegionalSeedExplorerColorMask is failed.") |
|
traceback.print_exc() |
|
|
|
noise = noise.cpu() |
|
mask.cpu() |
|
return (noise,) |
|
|
|
|
|
class RegionalSeedExplorerColorMask: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"color_mask": ("IMAGE",), |
|
"mask_color": ("STRING", {"multiline": False, "default": "#FFFFFF"}), |
|
|
|
"noise": ("NOISE",), |
|
"seed_prompt": ("STRING", {"multiline": True, "dynamicPrompts": False, "pysssss.autocomplete": False}), |
|
"enable_additional": ("BOOLEAN", {"default": True, "label_on": "true", "label_off": "false"}), |
|
"additional_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), |
|
"additional_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
"noise_mode": (["GPU(=A1111)", "CPU"],), |
|
}, |
|
"optional": |
|
{"variation_method": (["linear", "slerp"],), } |
|
} |
|
|
|
RETURN_TYPES = ("NOISE", "MASK") |
|
FUNCTION = "doit" |
|
|
|
CATEGORY = "InspirePack/Regional" |
|
|
|
@staticmethod |
|
def doit(color_mask, mask_color, noise, seed_prompt, enable_additional, additional_seed, additional_strength, noise_mode, variation_method='linear'): |
|
device = comfy.model_management.get_torch_device() |
|
noise_device = "cpu" if noise_mode == "CPU" else device |
|
|
|
color_mask = color_mask.to(device) |
|
noise = noise.to(device) |
|
|
|
mask = color_to_mask(color_mask, mask_color) |
|
original_mask = mask |
|
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(noise.shape[2], noise.shape[3]), mode="bilinear").squeeze(0) |
|
|
|
mask = mask.to(device) |
|
|
|
try: |
|
seed_prompt = seed_prompt.replace("\n", "") |
|
items = seed_prompt.strip().split(",") |
|
|
|
if items == ['']: |
|
items = [] |
|
|
|
if enable_additional: |
|
items.append((additional_seed, additional_strength)) |
|
|
|
noise = prompt_support.SeedExplorer.apply_variation(noise, items, noise_device, mask, variation_method=variation_method) |
|
except Exception: |
|
print(f"[ERROR] IGNORED: RegionalSeedExplorerColorMask is failed.") |
|
traceback.print_exc() |
|
|
|
color_mask.cpu() |
|
noise = noise.cpu() |
|
original_mask = original_mask.cpu() |
|
return (noise, original_mask) |
|
|
|
|
|
class ColorMaskToDepthMask: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"color_mask": ("IMAGE",), |
|
"spec": ("STRING", {"multiline": True, "default": "#FF0000:1.0\n#000000:1.0"}), |
|
"base_value": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0}), |
|
"dilation": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}), |
|
"flatten_method": (["override", "sum", "max"],), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("MASK", ) |
|
FUNCTION = "doit" |
|
|
|
CATEGORY = "InspirePack/Regional" |
|
|
|
def doit(self, color_mask, spec, base_value, dilation, flatten_method): |
|
specs = spec.split('\n') |
|
pat = re.compile("(?P<color_code>#[A-F0-9]+):(?P<cfg>[0-9]+(.[0-9]*)?)") |
|
|
|
masks = [torch.ones((1, color_mask.shape[1], color_mask.shape[2])) * base_value] |
|
for x in specs: |
|
match = pat.match(x) |
|
if match: |
|
mask = color_to_mask(color_mask=color_mask, mask_color=match['color_code']) * float(match['cfg']) |
|
mask = utils.dilate_mask(mask, dilation) |
|
masks.append(mask) |
|
|
|
if masks: |
|
masks = torch.cat(masks, dim=0) |
|
if flatten_method == 'override': |
|
masks = utils.flatten_non_zero_override(masks) |
|
elif flatten_method == 'max': |
|
masks = torch.max(masks, dim=0)[0] |
|
else: |
|
masks = torch.sum(masks, dim=0) |
|
|
|
masks = torch.clamp(masks, min=0.0, max=1.0) |
|
masks = masks.unsqueeze(0) |
|
else: |
|
masks = torch.tensor([]) |
|
|
|
return (masks, ) |
|
|
|
|
|
class RegionalCFG: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": {"model": ("MODEL",), |
|
"mask": ("MASK",), |
|
}} |
|
|
|
RETURN_TYPES = ("MODEL",) |
|
FUNCTION = "doit" |
|
|
|
CATEGORY = "InspirePack/Regional" |
|
|
|
@staticmethod |
|
def doit(model, mask): |
|
if len(mask.shape) == 2: |
|
mask = mask.unsqueeze(0).unsqueeze(0) |
|
elif len(mask.shape) == 3: |
|
mask = mask.unsqueeze(0) |
|
|
|
size = None |
|
|
|
def regional_cfg(args): |
|
nonlocal mask |
|
nonlocal size |
|
|
|
x = args['input'] |
|
|
|
if mask.device != x.device: |
|
mask = mask.to(x.device) |
|
|
|
if size != (x.shape[2], x.shape[3]): |
|
size = (x.shape[2], x.shape[3]) |
|
mask = torch.nn.functional.interpolate(mask, size=size, mode='bilinear', align_corners=False) |
|
|
|
cond_pred = args["cond_denoised"] |
|
uncond_pred = args["uncond_denoised"] |
|
cond_scale = args["cond_scale"] |
|
|
|
cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale * mask |
|
|
|
return x - cfg_result |
|
|
|
m = model.clone() |
|
m.set_model_sampler_cfg_function(regional_cfg) |
|
return (m,) |
|
|
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"RegionalPromptSimple //Inspire": RegionalPromptSimple, |
|
"RegionalPromptColorMask //Inspire": RegionalPromptColorMask, |
|
"RegionalConditioningSimple //Inspire": RegionalConditioningSimple, |
|
"RegionalConditioningColorMask //Inspire": RegionalConditioningColorMask, |
|
"RegionalIPAdapterMask //Inspire": RegionalIPAdapterMask, |
|
"RegionalIPAdapterColorMask //Inspire": RegionalIPAdapterColorMask, |
|
"RegionalIPAdapterEncodedMask //Inspire": RegionalIPAdapterEncodedMask, |
|
"RegionalIPAdapterEncodedColorMask //Inspire": RegionalIPAdapterEncodedColorMask, |
|
"RegionalSeedExplorerMask //Inspire": RegionalSeedExplorerMask, |
|
"RegionalSeedExplorerColorMask //Inspire": RegionalSeedExplorerColorMask, |
|
"ToIPAdapterPipe //Inspire": ToIPAdapterPipe, |
|
"FromIPAdapterPipe //Inspire": FromIPAdapterPipe, |
|
"ApplyRegionalIPAdapters //Inspire": ApplyRegionalIPAdapters, |
|
"RegionalCFG //Inspire": RegionalCFG, |
|
"ColorMaskToDepthMask //Inspire": ColorMaskToDepthMask, |
|
} |
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = { |
|
"RegionalPromptSimple //Inspire": "Regional Prompt Simple (Inspire)", |
|
"RegionalPromptColorMask //Inspire": "Regional Prompt By Color Mask (Inspire)", |
|
"RegionalConditioningSimple //Inspire": "Regional Conditioning Simple (Inspire)", |
|
"RegionalConditioningColorMask //Inspire": "Regional Conditioning By Color Mask (Inspire)", |
|
"RegionalIPAdapterMask //Inspire": "Regional IPAdapter Mask (Inspire)", |
|
"RegionalIPAdapterColorMask //Inspire": "Regional IPAdapter By Color Mask (Inspire)", |
|
"RegionalIPAdapterEncodedMask //Inspire": "Regional IPAdapter Encoded Mask (Inspire)", |
|
"RegionalIPAdapterEncodedColorMask //Inspire": "Regional IPAdapter Encoded By Color Mask (Inspire)", |
|
"RegionalSeedExplorerMask //Inspire": "Regional Seed Explorer By Mask (Inspire)", |
|
"RegionalSeedExplorerColorMask //Inspire": "Regional Seed Explorer By Color Mask (Inspire)", |
|
"ToIPAdapterPipe //Inspire": "ToIPAdapterPipe (Inspire)", |
|
"FromIPAdapterPipe //Inspire": "FromIPAdapterPipe (Inspire)", |
|
"ApplyRegionalIPAdapters //Inspire": "Apply Regional IPAdapters (Inspire)", |
|
"RegionalCFG //Inspire": "Regional CFG (Inspire)", |
|
"ColorMaskToDepthMask //Inspire": "Color Mask To Depth Mask (Inspire)", |
|
} |
|
|