|
|
|
|
|
|
|
import argparse
|
|
import gc
|
|
import math
|
|
import os
|
|
from multiprocessing import Value
|
|
import toml
|
|
|
|
from tqdm import tqdm
|
|
import torch
|
|
|
|
try:
|
|
import intel_extension_for_pytorch as ipex
|
|
|
|
if torch.xpu.is_available():
|
|
from library.ipex import ipex_init
|
|
|
|
ipex_init()
|
|
except Exception:
|
|
pass
|
|
from accelerate.utils import set_seed
|
|
from diffusers import DDPMScheduler
|
|
|
|
import library.train_util as train_util
|
|
import library.config_util as config_util
|
|
from library.config_util import (
|
|
ConfigSanitizer,
|
|
BlueprintGenerator,
|
|
)
|
|
import library.custom_train_functions as custom_train_functions
|
|
from library.custom_train_functions import (
|
|
apply_snr_weight,
|
|
get_weighted_text_embeddings,
|
|
prepare_scheduler_for_custom_training,
|
|
scale_v_prediction_loss_like_noise_prediction,
|
|
apply_debiased_estimation,
|
|
)
|
|
|
|
|
|
def train(args):
|
|
train_util.verify_training_args(args)
|
|
train_util.prepare_dataset_args(args, True)
|
|
|
|
cache_latents = args.cache_latents
|
|
|
|
if args.seed is not None:
|
|
set_seed(args.seed)
|
|
|
|
tokenizer = train_util.load_tokenizer(args)
|
|
|
|
|
|
if args.dataset_class is None:
|
|
blueprint_generator = BlueprintGenerator(ConfigSanitizer(False, True, False, True))
|
|
if args.dataset_config is not None:
|
|
print(f"Load dataset config from {args.dataset_config}")
|
|
user_config = config_util.load_user_config(args.dataset_config)
|
|
ignored = ["train_data_dir", "in_json"]
|
|
if any(getattr(args, attr) is not None for attr in ignored):
|
|
print(
|
|
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
|
|
", ".join(ignored)
|
|
)
|
|
)
|
|
else:
|
|
user_config = {
|
|
"datasets": [
|
|
{
|
|
"subsets": [
|
|
{
|
|
"image_dir": args.train_data_dir,
|
|
"metadata_file": args.in_json,
|
|
}
|
|
]
|
|
}
|
|
]
|
|
}
|
|
|
|
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer)
|
|
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
|
|
else:
|
|
train_dataset_group = train_util.load_arbitrary_dataset(args, tokenizer)
|
|
|
|
current_epoch = Value("i", 0)
|
|
current_step = Value("i", 0)
|
|
ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None
|
|
collator = train_util.collator_class(current_epoch, current_step, ds_for_collator)
|
|
|
|
if args.debug_dataset:
|
|
train_util.debug_dataset(train_dataset_group)
|
|
return
|
|
if len(train_dataset_group) == 0:
|
|
print(
|
|
"No data found. Please verify the metadata file and train_data_dir option. / 画像がありません。メタデータおよびtrain_data_dirオプションを確認してください。"
|
|
)
|
|
return
|
|
|
|
if cache_latents:
|
|
assert (
|
|
train_dataset_group.is_latent_cacheable()
|
|
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"
|
|
|
|
|
|
print("prepare accelerator")
|
|
accelerator = train_util.prepare_accelerator(args)
|
|
|
|
|
|
weight_dtype, save_dtype = train_util.prepare_dtype(args)
|
|
|
|
|
|
text_encoder, vae, unet, load_stable_diffusion_format = train_util.load_target_model(args, weight_dtype, accelerator)
|
|
|
|
|
|
if load_stable_diffusion_format:
|
|
src_stable_diffusion_ckpt = args.pretrained_model_name_or_path
|
|
src_diffusers_model_path = None
|
|
else:
|
|
src_stable_diffusion_ckpt = None
|
|
src_diffusers_model_path = args.pretrained_model_name_or_path
|
|
|
|
if args.save_model_as is None:
|
|
save_stable_diffusion_format = load_stable_diffusion_format
|
|
use_safetensors = args.use_safetensors
|
|
else:
|
|
save_stable_diffusion_format = args.save_model_as.lower() == "ckpt" or args.save_model_as.lower() == "safetensors"
|
|
use_safetensors = args.use_safetensors or ("safetensors" in args.save_model_as.lower())
|
|
|
|
|
|
def set_diffusers_xformers_flag(model, valid):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def fn_recursive_set_mem_eff(module: torch.nn.Module):
|
|
if hasattr(module, "set_use_memory_efficient_attention_xformers"):
|
|
module.set_use_memory_efficient_attention_xformers(valid)
|
|
|
|
for child in module.children():
|
|
fn_recursive_set_mem_eff(child)
|
|
|
|
fn_recursive_set_mem_eff(model)
|
|
|
|
|
|
if args.diffusers_xformers:
|
|
accelerator.print("Use xformers by Diffusers")
|
|
set_diffusers_xformers_flag(unet, True)
|
|
else:
|
|
|
|
accelerator.print("Disable Diffusers' xformers")
|
|
set_diffusers_xformers_flag(unet, False)
|
|
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers, args.sdpa)
|
|
|
|
|
|
if cache_latents:
|
|
vae.to(accelerator.device, dtype=weight_dtype)
|
|
vae.requires_grad_(False)
|
|
vae.eval()
|
|
with torch.no_grad():
|
|
train_dataset_group.cache_latents(vae, args.vae_batch_size, args.cache_latents_to_disk, accelerator.is_main_process)
|
|
vae.to("cpu")
|
|
if torch.cuda.is_available():
|
|
torch.cuda.empty_cache()
|
|
gc.collect()
|
|
|
|
accelerator.wait_for_everyone()
|
|
|
|
|
|
training_models = []
|
|
if args.gradient_checkpointing:
|
|
unet.enable_gradient_checkpointing()
|
|
training_models.append(unet)
|
|
|
|
if args.train_text_encoder:
|
|
accelerator.print("enable text encoder training")
|
|
if args.gradient_checkpointing:
|
|
text_encoder.gradient_checkpointing_enable()
|
|
training_models.append(text_encoder)
|
|
else:
|
|
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
|
text_encoder.requires_grad_(False)
|
|
if args.gradient_checkpointing:
|
|
text_encoder.gradient_checkpointing_enable()
|
|
text_encoder.train()
|
|
else:
|
|
text_encoder.eval()
|
|
|
|
if not cache_latents:
|
|
vae.requires_grad_(False)
|
|
vae.eval()
|
|
vae.to(accelerator.device, dtype=weight_dtype)
|
|
|
|
for m in training_models:
|
|
m.requires_grad_(True)
|
|
|
|
trainable_params = []
|
|
if args.learning_rate_te is None or not args.train_text_encoder:
|
|
for m in training_models:
|
|
trainable_params.extend(m.parameters())
|
|
else:
|
|
trainable_params = [
|
|
{"params": list(unet.parameters()), "lr": args.learning_rate},
|
|
{"params": list(text_encoder.parameters()), "lr": args.learning_rate_te},
|
|
]
|
|
|
|
|
|
accelerator.print("prepare optimizer, data loader etc.")
|
|
_, _, optimizer = train_util.get_optimizer(args, trainable_params=trainable_params)
|
|
|
|
|
|
|
|
n_workers = min(args.max_data_loader_n_workers, os.cpu_count() - 1)
|
|
train_dataloader = torch.utils.data.DataLoader(
|
|
train_dataset_group,
|
|
batch_size=1,
|
|
shuffle=True,
|
|
collate_fn=collator,
|
|
num_workers=n_workers,
|
|
persistent_workers=args.persistent_data_loader_workers,
|
|
)
|
|
|
|
|
|
if args.max_train_epochs is not None:
|
|
args.max_train_steps = args.max_train_epochs * math.ceil(
|
|
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
|
|
)
|
|
accelerator.print(f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}")
|
|
|
|
|
|
train_dataset_group.set_max_train_steps(args.max_train_steps)
|
|
|
|
|
|
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
|
|
|
|
|
|
if args.full_fp16:
|
|
assert (
|
|
args.mixed_precision == "fp16"
|
|
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
|
|
accelerator.print("enable full fp16 training.")
|
|
unet.to(weight_dtype)
|
|
text_encoder.to(weight_dtype)
|
|
|
|
|
|
if args.train_text_encoder:
|
|
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
|
unet, text_encoder, optimizer, train_dataloader, lr_scheduler
|
|
)
|
|
else:
|
|
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(unet, optimizer, train_dataloader, lr_scheduler)
|
|
|
|
|
|
text_encoder, unet = train_util.transform_if_model_is_DDP(text_encoder, unet)
|
|
|
|
|
|
if args.full_fp16:
|
|
train_util.patch_accelerator_for_fp16_training(accelerator)
|
|
|
|
|
|
train_util.resume_from_local_or_hf_if_specified(accelerator, args)
|
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
|
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
|
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
|
|
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
|
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
|
accelerator.print("running training / 学習開始")
|
|
accelerator.print(f" num examples / サンプル数: {train_dataset_group.num_train_images}")
|
|
accelerator.print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
|
|
accelerator.print(f" num epochs / epoch数: {num_train_epochs}")
|
|
accelerator.print(f" batch size per device / バッチサイズ: {args.train_batch_size}")
|
|
accelerator.print(
|
|
f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}"
|
|
)
|
|
accelerator.print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
|
|
accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
|
|
|
|
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
|
|
global_step = 0
|
|
|
|
noise_scheduler = DDPMScheduler(
|
|
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False
|
|
)
|
|
prepare_scheduler_for_custom_training(noise_scheduler, accelerator.device)
|
|
if args.zero_terminal_snr:
|
|
custom_train_functions.fix_noise_scheduler_betas_for_zero_terminal_snr(noise_scheduler)
|
|
|
|
if accelerator.is_main_process:
|
|
init_kwargs = {}
|
|
if args.log_tracker_config is not None:
|
|
init_kwargs = toml.load(args.log_tracker_config)
|
|
accelerator.init_trackers("finetuning" if args.log_tracker_name is None else args.log_tracker_name, init_kwargs=init_kwargs)
|
|
|
|
loss_recorder = train_util.LossRecorder()
|
|
for epoch in range(num_train_epochs):
|
|
accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}")
|
|
current_epoch.value = epoch + 1
|
|
|
|
for m in training_models:
|
|
m.train()
|
|
|
|
for step, batch in enumerate(train_dataloader):
|
|
current_step.value = global_step
|
|
with accelerator.accumulate(training_models[0]):
|
|
with torch.no_grad():
|
|
if "latents" in batch and batch["latents"] is not None:
|
|
latents = batch["latents"].to(accelerator.device)
|
|
else:
|
|
|
|
latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample()
|
|
latents = latents * 0.18215
|
|
b_size = latents.shape[0]
|
|
|
|
with torch.set_grad_enabled(args.train_text_encoder):
|
|
|
|
if args.weighted_captions:
|
|
encoder_hidden_states = get_weighted_text_embeddings(
|
|
tokenizer,
|
|
text_encoder,
|
|
batch["captions"],
|
|
accelerator.device,
|
|
args.max_token_length // 75 if args.max_token_length else 1,
|
|
clip_skip=args.clip_skip,
|
|
)
|
|
else:
|
|
input_ids = batch["input_ids"].to(accelerator.device)
|
|
encoder_hidden_states = train_util.get_hidden_states(
|
|
args, input_ids, tokenizer, text_encoder, None if not args.full_fp16 else weight_dtype
|
|
)
|
|
|
|
|
|
|
|
noise, noisy_latents, timesteps = train_util.get_noise_noisy_latents_and_timesteps(args, noise_scheduler, latents)
|
|
|
|
|
|
with accelerator.autocast():
|
|
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
|
|
|
if args.v_parameterization:
|
|
|
|
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
|
else:
|
|
target = noise
|
|
|
|
if args.min_snr_gamma or args.scale_v_pred_loss_like_noise_pred or args.debiased_estimation_loss:
|
|
|
|
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
|
|
loss = loss.mean([1, 2, 3])
|
|
|
|
if args.min_snr_gamma:
|
|
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma)
|
|
if args.scale_v_pred_loss_like_noise_pred:
|
|
loss = scale_v_prediction_loss_like_noise_prediction(loss, timesteps, noise_scheduler)
|
|
if args.debiased_estimation_loss:
|
|
loss = apply_debiased_estimation(loss, timesteps, noise_scheduler)
|
|
|
|
loss = loss.mean()
|
|
else:
|
|
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="mean")
|
|
|
|
accelerator.backward(loss)
|
|
if accelerator.sync_gradients and args.max_grad_norm != 0.0:
|
|
params_to_clip = []
|
|
for m in training_models:
|
|
params_to_clip.extend(m.parameters())
|
|
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
|
|
|
|
optimizer.step()
|
|
lr_scheduler.step()
|
|
optimizer.zero_grad(set_to_none=True)
|
|
|
|
|
|
if accelerator.sync_gradients:
|
|
progress_bar.update(1)
|
|
global_step += 1
|
|
|
|
train_util.sample_images(
|
|
accelerator, args, None, global_step, accelerator.device, vae, tokenizer, text_encoder, unet
|
|
)
|
|
|
|
|
|
if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0:
|
|
accelerator.wait_for_everyone()
|
|
if accelerator.is_main_process:
|
|
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
|
|
train_util.save_sd_model_on_epoch_end_or_stepwise(
|
|
args,
|
|
False,
|
|
accelerator,
|
|
src_path,
|
|
save_stable_diffusion_format,
|
|
use_safetensors,
|
|
save_dtype,
|
|
epoch,
|
|
num_train_epochs,
|
|
global_step,
|
|
accelerator.unwrap_model(text_encoder),
|
|
accelerator.unwrap_model(unet),
|
|
vae,
|
|
)
|
|
|
|
current_loss = loss.detach().item()
|
|
if args.logging_dir is not None:
|
|
logs = {"loss": current_loss}
|
|
train_util.append_lr_to_logs(logs, lr_scheduler, args.optimizer_type, including_unet=True)
|
|
accelerator.log(logs, step=global_step)
|
|
|
|
loss_recorder.add(epoch=epoch, step=step, loss=current_loss)
|
|
avr_loss: float = loss_recorder.moving_average
|
|
logs = {"avr_loss": avr_loss}
|
|
progress_bar.set_postfix(**logs)
|
|
|
|
if global_step >= args.max_train_steps:
|
|
break
|
|
|
|
if args.logging_dir is not None:
|
|
logs = {"loss/epoch": loss_recorder.moving_average}
|
|
accelerator.log(logs, step=epoch + 1)
|
|
|
|
accelerator.wait_for_everyone()
|
|
|
|
if args.save_every_n_epochs is not None:
|
|
if accelerator.is_main_process:
|
|
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
|
|
train_util.save_sd_model_on_epoch_end_or_stepwise(
|
|
args,
|
|
True,
|
|
accelerator,
|
|
src_path,
|
|
save_stable_diffusion_format,
|
|
use_safetensors,
|
|
save_dtype,
|
|
epoch,
|
|
num_train_epochs,
|
|
global_step,
|
|
accelerator.unwrap_model(text_encoder),
|
|
accelerator.unwrap_model(unet),
|
|
vae,
|
|
)
|
|
|
|
train_util.sample_images(accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizer, text_encoder, unet)
|
|
|
|
is_main_process = accelerator.is_main_process
|
|
if is_main_process:
|
|
unet = accelerator.unwrap_model(unet)
|
|
text_encoder = accelerator.unwrap_model(text_encoder)
|
|
|
|
accelerator.end_training()
|
|
|
|
if args.save_state and is_main_process:
|
|
train_util.save_state_on_train_end(args, accelerator)
|
|
|
|
del accelerator
|
|
|
|
if is_main_process:
|
|
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
|
|
train_util.save_sd_model_on_train_end(
|
|
args, src_path, save_stable_diffusion_format, use_safetensors, save_dtype, epoch, global_step, text_encoder, unet, vae
|
|
)
|
|
print("model saved.")
|
|
|
|
|
|
def setup_parser() -> argparse.ArgumentParser:
|
|
parser = argparse.ArgumentParser()
|
|
|
|
train_util.add_sd_models_arguments(parser)
|
|
train_util.add_dataset_arguments(parser, False, True, True)
|
|
train_util.add_training_arguments(parser, False)
|
|
train_util.add_sd_saving_arguments(parser)
|
|
train_util.add_optimizer_arguments(parser)
|
|
config_util.add_config_arguments(parser)
|
|
custom_train_functions.add_custom_train_arguments(parser)
|
|
|
|
parser.add_argument("--diffusers_xformers", action="store_true", help="use xformers by diffusers / Diffusersでxformersを使用する")
|
|
parser.add_argument("--train_text_encoder", action="store_true", help="train text encoder / text encoderも学習する")
|
|
parser.add_argument(
|
|
"--learning_rate_te",
|
|
type=float,
|
|
default=None,
|
|
help="learning rate for text encoder, default is same as unet / Text Encoderの学習率、デフォルトはunetと同じ",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = setup_parser()
|
|
|
|
args = parser.parse_args()
|
|
args = train_util.read_config_from_file(args, parser)
|
|
|
|
train(args)
|
|
|