|
import argparse
|
|
import gc
|
|
import json
|
|
import math
|
|
import os
|
|
import random
|
|
import time
|
|
from multiprocessing import Value
|
|
from types import SimpleNamespace
|
|
import toml
|
|
|
|
from tqdm import tqdm
|
|
import torch
|
|
try:
|
|
import intel_extension_for_pytorch as ipex
|
|
if torch.xpu.is_available():
|
|
from library.ipex import ipex_init
|
|
ipex_init()
|
|
except Exception:
|
|
pass
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from accelerate.utils import set_seed
|
|
from diffusers import DDPMScheduler, ControlNetModel
|
|
from safetensors.torch import load_file
|
|
|
|
import library.model_util as model_util
|
|
import library.train_util as train_util
|
|
import library.config_util as config_util
|
|
from library.config_util import (
|
|
ConfigSanitizer,
|
|
BlueprintGenerator,
|
|
)
|
|
import library.huggingface_util as huggingface_util
|
|
import library.custom_train_functions as custom_train_functions
|
|
from library.custom_train_functions import (
|
|
apply_snr_weight,
|
|
pyramid_noise_like,
|
|
apply_noise_offset,
|
|
)
|
|
|
|
|
|
|
|
def generate_step_logs(args: argparse.Namespace, current_loss, avr_loss, lr_scheduler):
|
|
logs = {
|
|
"loss/current": current_loss,
|
|
"loss/average": avr_loss,
|
|
"lr": lr_scheduler.get_last_lr()[0],
|
|
}
|
|
|
|
if args.optimizer_type.lower().startswith("DAdapt".lower()):
|
|
logs["lr/d*lr"] = lr_scheduler.optimizers[-1].param_groups[0]["d"] * lr_scheduler.optimizers[-1].param_groups[0]["lr"]
|
|
|
|
return logs
|
|
|
|
|
|
def train(args):
|
|
|
|
|
|
train_util.verify_training_args(args)
|
|
train_util.prepare_dataset_args(args, True)
|
|
|
|
cache_latents = args.cache_latents
|
|
use_user_config = args.dataset_config is not None
|
|
|
|
if args.seed is None:
|
|
args.seed = random.randint(0, 2**32)
|
|
set_seed(args.seed)
|
|
|
|
tokenizer = train_util.load_tokenizer(args)
|
|
|
|
|
|
blueprint_generator = BlueprintGenerator(ConfigSanitizer(False, False, True, True))
|
|
if use_user_config:
|
|
print(f"Load dataset config from {args.dataset_config}")
|
|
user_config = config_util.load_user_config(args.dataset_config)
|
|
ignored = ["train_data_dir", "conditioning_data_dir"]
|
|
if any(getattr(args, attr) is not None for attr in ignored):
|
|
print(
|
|
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
|
|
", ".join(ignored)
|
|
)
|
|
)
|
|
else:
|
|
user_config = {
|
|
"datasets": [
|
|
{
|
|
"subsets": config_util.generate_controlnet_subsets_config_by_subdirs(
|
|
args.train_data_dir,
|
|
args.conditioning_data_dir,
|
|
args.caption_extension,
|
|
)
|
|
}
|
|
]
|
|
}
|
|
|
|
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer)
|
|
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
|
|
|
|
current_epoch = Value("i", 0)
|
|
current_step = Value("i", 0)
|
|
ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None
|
|
collator = train_util.collator_class(current_epoch, current_step, ds_for_collator)
|
|
|
|
if args.debug_dataset:
|
|
train_util.debug_dataset(train_dataset_group)
|
|
return
|
|
if len(train_dataset_group) == 0:
|
|
print(
|
|
"No data found. Please verify arguments (train_data_dir must be the parent of folders with images) / 画像がありません。引数指定を確認してください(train_data_dirには画像があるフォルダではなく、画像があるフォルダの親フォルダを指定する必要があります)"
|
|
)
|
|
return
|
|
|
|
if cache_latents:
|
|
assert (
|
|
train_dataset_group.is_latent_cacheable()
|
|
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"
|
|
|
|
|
|
print("prepare accelerator")
|
|
accelerator = train_util.prepare_accelerator(args)
|
|
is_main_process = accelerator.is_main_process
|
|
|
|
|
|
weight_dtype, save_dtype = train_util.prepare_dtype(args)
|
|
|
|
|
|
text_encoder, vae, unet, _ = train_util.load_target_model(
|
|
args, weight_dtype, accelerator, unet_use_linear_projection_in_v2=True
|
|
)
|
|
|
|
|
|
if args.v2:
|
|
unet.config = {
|
|
"act_fn": "silu",
|
|
"attention_head_dim": [5, 10, 20, 20],
|
|
"block_out_channels": [320, 640, 1280, 1280],
|
|
"center_input_sample": False,
|
|
"cross_attention_dim": 1024,
|
|
"down_block_types": ["CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D"],
|
|
"downsample_padding": 1,
|
|
"dual_cross_attention": False,
|
|
"flip_sin_to_cos": True,
|
|
"freq_shift": 0,
|
|
"in_channels": 4,
|
|
"layers_per_block": 2,
|
|
"mid_block_scale_factor": 1,
|
|
"norm_eps": 1e-05,
|
|
"norm_num_groups": 32,
|
|
"num_class_embeds": None,
|
|
"only_cross_attention": False,
|
|
"out_channels": 4,
|
|
"sample_size": 96,
|
|
"up_block_types": ["UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"],
|
|
"use_linear_projection": True,
|
|
"upcast_attention": True,
|
|
"only_cross_attention": False,
|
|
"downsample_padding": 1,
|
|
"use_linear_projection": True,
|
|
"class_embed_type": None,
|
|
"num_class_embeds": None,
|
|
"resnet_time_scale_shift": "default",
|
|
"projection_class_embeddings_input_dim": None,
|
|
}
|
|
else:
|
|
unet.config = {
|
|
"act_fn": "silu",
|
|
"attention_head_dim": 8,
|
|
"block_out_channels": [320, 640, 1280, 1280],
|
|
"center_input_sample": False,
|
|
"cross_attention_dim": 768,
|
|
"down_block_types": ["CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D"],
|
|
"downsample_padding": 1,
|
|
"flip_sin_to_cos": True,
|
|
"freq_shift": 0,
|
|
"in_channels": 4,
|
|
"layers_per_block": 2,
|
|
"mid_block_scale_factor": 1,
|
|
"norm_eps": 1e-05,
|
|
"norm_num_groups": 32,
|
|
"out_channels": 4,
|
|
"sample_size": 64,
|
|
"up_block_types": ["UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"],
|
|
"only_cross_attention": False,
|
|
"downsample_padding": 1,
|
|
"use_linear_projection": False,
|
|
"class_embed_type": None,
|
|
"num_class_embeds": None,
|
|
"upcast_attention": False,
|
|
"resnet_time_scale_shift": "default",
|
|
"projection_class_embeddings_input_dim": None,
|
|
}
|
|
unet.config = SimpleNamespace(**unet.config)
|
|
|
|
controlnet = ControlNetModel.from_unet(unet)
|
|
|
|
if args.controlnet_model_name_or_path:
|
|
filename = args.controlnet_model_name_or_path
|
|
if os.path.isfile(filename):
|
|
if os.path.splitext(filename)[1] == ".safetensors":
|
|
state_dict = load_file(filename)
|
|
else:
|
|
state_dict = torch.load(filename)
|
|
state_dict = model_util.convert_controlnet_state_dict_to_diffusers(state_dict)
|
|
controlnet.load_state_dict(state_dict)
|
|
elif os.path.isdir(filename):
|
|
controlnet = ControlNetModel.from_pretrained(filename)
|
|
|
|
|
|
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers, args.sdpa)
|
|
|
|
|
|
if cache_latents:
|
|
vae.to(accelerator.device, dtype=weight_dtype)
|
|
vae.requires_grad_(False)
|
|
vae.eval()
|
|
with torch.no_grad():
|
|
train_dataset_group.cache_latents(
|
|
vae,
|
|
args.vae_batch_size,
|
|
args.cache_latents_to_disk,
|
|
accelerator.is_main_process,
|
|
)
|
|
vae.to("cpu")
|
|
if torch.cuda.is_available():
|
|
torch.cuda.empty_cache()
|
|
gc.collect()
|
|
|
|
accelerator.wait_for_everyone()
|
|
|
|
if args.gradient_checkpointing:
|
|
controlnet.enable_gradient_checkpointing()
|
|
|
|
|
|
accelerator.print("prepare optimizer, data loader etc.")
|
|
|
|
trainable_params = controlnet.parameters()
|
|
|
|
_, _, optimizer = train_util.get_optimizer(args, trainable_params)
|
|
|
|
|
|
|
|
n_workers = min(args.max_data_loader_n_workers, os.cpu_count() - 1)
|
|
|
|
train_dataloader = torch.utils.data.DataLoader(
|
|
train_dataset_group,
|
|
batch_size=1,
|
|
shuffle=True,
|
|
collate_fn=collator,
|
|
num_workers=n_workers,
|
|
persistent_workers=args.persistent_data_loader_workers,
|
|
)
|
|
|
|
|
|
if args.max_train_epochs is not None:
|
|
args.max_train_steps = args.max_train_epochs * math.ceil(
|
|
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
|
|
)
|
|
accelerator.print(f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}")
|
|
|
|
|
|
train_dataset_group.set_max_train_steps(args.max_train_steps)
|
|
|
|
|
|
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
|
|
|
|
|
|
if args.full_fp16:
|
|
assert (
|
|
args.mixed_precision == "fp16"
|
|
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
|
|
accelerator.print("enable full fp16 training.")
|
|
controlnet.to(weight_dtype)
|
|
|
|
|
|
controlnet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
|
controlnet, optimizer, train_dataloader, lr_scheduler
|
|
)
|
|
|
|
unet.requires_grad_(False)
|
|
text_encoder.requires_grad_(False)
|
|
unet.to(accelerator.device)
|
|
text_encoder.to(accelerator.device)
|
|
|
|
|
|
controlnet = controlnet.module if isinstance(controlnet, DDP) else controlnet
|
|
|
|
controlnet.train()
|
|
|
|
if not cache_latents:
|
|
vae.requires_grad_(False)
|
|
vae.eval()
|
|
vae.to(accelerator.device, dtype=weight_dtype)
|
|
|
|
|
|
if args.full_fp16:
|
|
train_util.patch_accelerator_for_fp16_training(accelerator)
|
|
|
|
|
|
train_util.resume_from_local_or_hf_if_specified(accelerator, args)
|
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
|
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
|
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
|
|
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
|
|
|
|
|
|
|
|
accelerator.print("running training / 学習開始")
|
|
accelerator.print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}")
|
|
accelerator.print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}")
|
|
accelerator.print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
|
|
accelerator.print(f" num epochs / epoch数: {num_train_epochs}")
|
|
accelerator.print(f" batch size per device / バッチサイズ: {', '.join([str(d.batch_size) for d in train_dataset_group.datasets])}")
|
|
|
|
accelerator.print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
|
|
accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
|
|
|
|
progress_bar = tqdm(
|
|
range(args.max_train_steps),
|
|
smoothing=0,
|
|
disable=not accelerator.is_local_main_process,
|
|
desc="steps",
|
|
)
|
|
global_step = 0
|
|
|
|
noise_scheduler = DDPMScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
num_train_timesteps=1000,
|
|
clip_sample=False,
|
|
)
|
|
if accelerator.is_main_process:
|
|
init_kwargs = {}
|
|
if args.log_tracker_config is not None:
|
|
init_kwargs = toml.load(args.log_tracker_config)
|
|
accelerator.init_trackers("controlnet_train" if args.log_tracker_name is None else args.log_tracker_name, init_kwargs=init_kwargs)
|
|
|
|
loss_recorder = train_util.LossRecorder()
|
|
del train_dataset_group
|
|
|
|
|
|
def save_model(ckpt_name, model, force_sync_upload=False):
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
ckpt_file = os.path.join(args.output_dir, ckpt_name)
|
|
|
|
accelerator.print(f"\nsaving checkpoint: {ckpt_file}")
|
|
|
|
state_dict = model_util.convert_controlnet_state_dict_to_sd(model.state_dict())
|
|
|
|
if save_dtype is not None:
|
|
for key in list(state_dict.keys()):
|
|
v = state_dict[key]
|
|
v = v.detach().clone().to("cpu").to(save_dtype)
|
|
state_dict[key] = v
|
|
|
|
if os.path.splitext(ckpt_file)[1] == ".safetensors":
|
|
from safetensors.torch import save_file
|
|
|
|
save_file(state_dict, ckpt_file)
|
|
else:
|
|
torch.save(state_dict, ckpt_file)
|
|
|
|
if args.huggingface_repo_id is not None:
|
|
huggingface_util.upload(args, ckpt_file, "/" + ckpt_name, force_sync_upload=force_sync_upload)
|
|
|
|
def remove_model(old_ckpt_name):
|
|
old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name)
|
|
if os.path.exists(old_ckpt_file):
|
|
accelerator.print(f"removing old checkpoint: {old_ckpt_file}")
|
|
os.remove(old_ckpt_file)
|
|
|
|
|
|
for epoch in range(num_train_epochs):
|
|
if is_main_process:
|
|
accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}")
|
|
current_epoch.value = epoch + 1
|
|
|
|
for step, batch in enumerate(train_dataloader):
|
|
current_step.value = global_step
|
|
with accelerator.accumulate(controlnet):
|
|
with torch.no_grad():
|
|
if "latents" in batch and batch["latents"] is not None:
|
|
latents = batch["latents"].to(accelerator.device)
|
|
else:
|
|
|
|
latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample()
|
|
latents = latents * 0.18215
|
|
b_size = latents.shape[0]
|
|
|
|
input_ids = batch["input_ids"].to(accelerator.device)
|
|
encoder_hidden_states = train_util.get_hidden_states(args, input_ids, tokenizer, text_encoder, weight_dtype)
|
|
|
|
|
|
noise = torch.randn_like(latents, device=latents.device)
|
|
if args.noise_offset:
|
|
noise = apply_noise_offset(latents, noise, args.noise_offset, args.adaptive_noise_scale)
|
|
elif args.multires_noise_iterations:
|
|
noise = pyramid_noise_like(
|
|
noise,
|
|
latents.device,
|
|
args.multires_noise_iterations,
|
|
args.multires_noise_discount,
|
|
)
|
|
|
|
|
|
timesteps = torch.randint(
|
|
0,
|
|
noise_scheduler.config.num_train_timesteps,
|
|
(b_size,),
|
|
device=latents.device,
|
|
)
|
|
timesteps = timesteps.long()
|
|
|
|
|
|
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
|
|
|
controlnet_image = batch["conditioning_images"].to(dtype=weight_dtype)
|
|
|
|
with accelerator.autocast():
|
|
down_block_res_samples, mid_block_res_sample = controlnet(
|
|
noisy_latents,
|
|
timesteps,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
controlnet_cond=controlnet_image,
|
|
return_dict=False,
|
|
)
|
|
|
|
|
|
noise_pred = unet(
|
|
noisy_latents,
|
|
timesteps,
|
|
encoder_hidden_states,
|
|
down_block_additional_residuals=[sample.to(dtype=weight_dtype) for sample in down_block_res_samples],
|
|
mid_block_additional_residual=mid_block_res_sample.to(dtype=weight_dtype),
|
|
).sample
|
|
|
|
if args.v_parameterization:
|
|
|
|
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
|
else:
|
|
target = noise
|
|
|
|
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
|
|
loss = loss.mean([1, 2, 3])
|
|
|
|
loss_weights = batch["loss_weights"]
|
|
loss = loss * loss_weights
|
|
|
|
if args.min_snr_gamma:
|
|
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma)
|
|
|
|
loss = loss.mean()
|
|
|
|
accelerator.backward(loss)
|
|
if accelerator.sync_gradients and args.max_grad_norm != 0.0:
|
|
params_to_clip = controlnet.parameters()
|
|
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
|
|
|
|
optimizer.step()
|
|
lr_scheduler.step()
|
|
optimizer.zero_grad(set_to_none=True)
|
|
|
|
|
|
if accelerator.sync_gradients:
|
|
progress_bar.update(1)
|
|
global_step += 1
|
|
|
|
train_util.sample_images(
|
|
accelerator,
|
|
args,
|
|
None,
|
|
global_step,
|
|
accelerator.device,
|
|
vae,
|
|
tokenizer,
|
|
text_encoder,
|
|
unet,
|
|
controlnet=controlnet,
|
|
)
|
|
|
|
|
|
if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0:
|
|
accelerator.wait_for_everyone()
|
|
if accelerator.is_main_process:
|
|
ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, global_step)
|
|
save_model(
|
|
ckpt_name,
|
|
accelerator.unwrap_model(controlnet),
|
|
)
|
|
|
|
if args.save_state:
|
|
train_util.save_and_remove_state_stepwise(args, accelerator, global_step)
|
|
|
|
remove_step_no = train_util.get_remove_step_no(args, global_step)
|
|
if remove_step_no is not None:
|
|
remove_ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, remove_step_no)
|
|
remove_model(remove_ckpt_name)
|
|
|
|
current_loss = loss.detach().item()
|
|
loss_recorder.add(epoch=epoch, step=step, loss=current_loss)
|
|
avr_loss: float = loss_recorder.moving_average
|
|
logs = {"avr_loss": avr_loss}
|
|
progress_bar.set_postfix(**logs)
|
|
|
|
if args.logging_dir is not None:
|
|
logs = generate_step_logs(args, current_loss, avr_loss, lr_scheduler)
|
|
accelerator.log(logs, step=global_step)
|
|
|
|
if global_step >= args.max_train_steps:
|
|
break
|
|
|
|
if args.logging_dir is not None:
|
|
logs = {"loss/epoch": loss_recorder.moving_average}
|
|
accelerator.log(logs, step=epoch + 1)
|
|
|
|
accelerator.wait_for_everyone()
|
|
|
|
|
|
if args.save_every_n_epochs is not None:
|
|
saving = (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs
|
|
if is_main_process and saving:
|
|
ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, epoch + 1)
|
|
save_model(ckpt_name, accelerator.unwrap_model(controlnet))
|
|
|
|
remove_epoch_no = train_util.get_remove_epoch_no(args, epoch + 1)
|
|
if remove_epoch_no is not None:
|
|
remove_ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, remove_epoch_no)
|
|
remove_model(remove_ckpt_name)
|
|
|
|
if args.save_state:
|
|
train_util.save_and_remove_state_on_epoch_end(args, accelerator, epoch + 1)
|
|
|
|
train_util.sample_images(
|
|
accelerator,
|
|
args,
|
|
epoch + 1,
|
|
global_step,
|
|
accelerator.device,
|
|
vae,
|
|
tokenizer,
|
|
text_encoder,
|
|
unet,
|
|
controlnet=controlnet,
|
|
)
|
|
|
|
|
|
if is_main_process:
|
|
controlnet = accelerator.unwrap_model(controlnet)
|
|
|
|
accelerator.end_training()
|
|
|
|
if is_main_process and args.save_state:
|
|
train_util.save_state_on_train_end(args, accelerator)
|
|
|
|
|
|
|
|
if is_main_process:
|
|
ckpt_name = train_util.get_last_ckpt_name(args, "." + args.save_model_as)
|
|
save_model(ckpt_name, controlnet, force_sync_upload=True)
|
|
|
|
print("model saved.")
|
|
|
|
|
|
def setup_parser() -> argparse.ArgumentParser:
|
|
parser = argparse.ArgumentParser()
|
|
|
|
train_util.add_sd_models_arguments(parser)
|
|
train_util.add_dataset_arguments(parser, False, True, True)
|
|
train_util.add_training_arguments(parser, False)
|
|
train_util.add_optimizer_arguments(parser)
|
|
config_util.add_config_arguments(parser)
|
|
custom_train_functions.add_custom_train_arguments(parser)
|
|
|
|
parser.add_argument(
|
|
"--save_model_as",
|
|
type=str,
|
|
default="safetensors",
|
|
choices=[None, "ckpt", "pt", "safetensors"],
|
|
help="format to save the model (default is .safetensors) / モデル保存時の形式(デフォルトはsafetensors)",
|
|
)
|
|
parser.add_argument(
|
|
"--controlnet_model_name_or_path",
|
|
type=str,
|
|
default=None,
|
|
help="controlnet model name or path / controlnetのモデル名またはパス",
|
|
)
|
|
parser.add_argument(
|
|
"--conditioning_data_dir",
|
|
type=str,
|
|
default=None,
|
|
help="conditioning data directory / 条件付けデータのディレクトリ",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = setup_parser()
|
|
|
|
args = parser.parse_args()
|
|
args = train_util.read_config_from_file(args, parser)
|
|
|
|
train(args)
|
|
|