|
import importlib
|
|
import argparse
|
|
import gc
|
|
import math
|
|
import os
|
|
import sys
|
|
import random
|
|
import time
|
|
import json
|
|
from multiprocessing import Value
|
|
import toml
|
|
|
|
from tqdm import tqdm
|
|
import torch
|
|
|
|
try:
|
|
import intel_extension_for_pytorch as ipex
|
|
|
|
if torch.xpu.is_available():
|
|
from library.ipex import ipex_init
|
|
|
|
ipex_init()
|
|
except Exception:
|
|
pass
|
|
from accelerate.utils import set_seed
|
|
from diffusers import DDPMScheduler
|
|
from library import model_util
|
|
|
|
import library.train_util as train_util
|
|
from library.train_util import (
|
|
DreamBoothDataset,
|
|
)
|
|
import library.config_util as config_util
|
|
from library.config_util import (
|
|
ConfigSanitizer,
|
|
BlueprintGenerator,
|
|
)
|
|
import library.huggingface_util as huggingface_util
|
|
import library.custom_train_functions as custom_train_functions
|
|
from library.custom_train_functions import (
|
|
apply_snr_weight,
|
|
get_weighted_text_embeddings,
|
|
prepare_scheduler_for_custom_training,
|
|
scale_v_prediction_loss_like_noise_prediction,
|
|
add_v_prediction_like_loss,
|
|
apply_debiased_estimation,
|
|
)
|
|
|
|
|
|
class NetworkTrainer:
|
|
def __init__(self):
|
|
self.vae_scale_factor = 0.18215
|
|
self.is_sdxl = False
|
|
|
|
|
|
def generate_step_logs(
|
|
self, args: argparse.Namespace, current_loss, avr_loss, lr_scheduler, keys_scaled=None, mean_norm=None, maximum_norm=None
|
|
):
|
|
logs = {"loss/current": current_loss, "loss/average": avr_loss}
|
|
|
|
if keys_scaled is not None:
|
|
logs["max_norm/keys_scaled"] = keys_scaled
|
|
logs["max_norm/average_key_norm"] = mean_norm
|
|
logs["max_norm/max_key_norm"] = maximum_norm
|
|
|
|
lrs = lr_scheduler.get_last_lr()
|
|
|
|
if args.network_train_text_encoder_only or len(lrs) <= 2:
|
|
if args.network_train_unet_only:
|
|
logs["lr/unet"] = float(lrs[0])
|
|
elif args.network_train_text_encoder_only:
|
|
logs["lr/textencoder"] = float(lrs[0])
|
|
else:
|
|
logs["lr/textencoder"] = float(lrs[0])
|
|
logs["lr/unet"] = float(lrs[-1])
|
|
|
|
if (
|
|
args.optimizer_type.lower().startswith("DAdapt".lower()) or args.optimizer_type.lower() == "Prodigy".lower()
|
|
):
|
|
logs["lr/d*lr"] = (
|
|
lr_scheduler.optimizers[-1].param_groups[0]["d"] * lr_scheduler.optimizers[-1].param_groups[0]["lr"]
|
|
)
|
|
else:
|
|
idx = 0
|
|
if not args.network_train_unet_only:
|
|
logs["lr/textencoder"] = float(lrs[0])
|
|
idx = 1
|
|
|
|
for i in range(idx, len(lrs)):
|
|
logs[f"lr/group{i}"] = float(lrs[i])
|
|
if args.optimizer_type.lower().startswith("DAdapt".lower()) or args.optimizer_type.lower() == "Prodigy".lower():
|
|
logs[f"lr/d*lr/group{i}"] = (
|
|
lr_scheduler.optimizers[-1].param_groups[i]["d"] * lr_scheduler.optimizers[-1].param_groups[i]["lr"]
|
|
)
|
|
|
|
return logs
|
|
|
|
def assert_extra_args(self, args, train_dataset_group):
|
|
pass
|
|
|
|
def load_target_model(self, args, weight_dtype, accelerator):
|
|
text_encoder, vae, unet, _ = train_util.load_target_model(args, weight_dtype, accelerator)
|
|
return model_util.get_model_version_str_for_sd1_sd2(args.v2, args.v_parameterization), text_encoder, vae, unet
|
|
|
|
def load_tokenizer(self, args):
|
|
tokenizer = train_util.load_tokenizer(args)
|
|
return tokenizer
|
|
|
|
def is_text_encoder_outputs_cached(self, args):
|
|
return False
|
|
|
|
def is_train_text_encoder(self, args):
|
|
return not args.network_train_unet_only and not self.is_text_encoder_outputs_cached(args)
|
|
|
|
def cache_text_encoder_outputs_if_needed(
|
|
self, args, accelerator, unet, vae, tokenizers, text_encoders, data_loader, weight_dtype
|
|
):
|
|
for t_enc in text_encoders:
|
|
t_enc.to(accelerator.device)
|
|
|
|
def get_text_cond(self, args, accelerator, batch, tokenizers, text_encoders, weight_dtype):
|
|
input_ids = batch["input_ids"].to(accelerator.device)
|
|
encoder_hidden_states = train_util.get_hidden_states(args, input_ids, tokenizers[0], text_encoders[0], weight_dtype)
|
|
return encoder_hidden_states
|
|
|
|
def call_unet(self, args, accelerator, unet, noisy_latents, timesteps, text_conds, batch, weight_dtype):
|
|
noise_pred = unet(noisy_latents, timesteps, text_conds).sample
|
|
return noise_pred
|
|
|
|
def sample_images(self, accelerator, args, epoch, global_step, device, vae, tokenizer, text_encoder, unet):
|
|
train_util.sample_images(accelerator, args, epoch, global_step, device, vae, tokenizer, text_encoder, unet)
|
|
|
|
def train(self, args):
|
|
session_id = random.randint(0, 2**32)
|
|
training_started_at = time.time()
|
|
train_util.verify_training_args(args)
|
|
train_util.prepare_dataset_args(args, True)
|
|
|
|
cache_latents = args.cache_latents
|
|
use_dreambooth_method = args.in_json is None
|
|
use_user_config = args.dataset_config is not None
|
|
|
|
if args.seed is None:
|
|
args.seed = random.randint(0, 2**32)
|
|
set_seed(args.seed)
|
|
|
|
|
|
tokenizer = self.load_tokenizer(args)
|
|
tokenizers = tokenizer if isinstance(tokenizer, list) else [tokenizer]
|
|
|
|
|
|
if args.dataset_class is None:
|
|
blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, True, False, True))
|
|
if use_user_config:
|
|
print(f"Loading dataset config from {args.dataset_config}")
|
|
user_config = config_util.load_user_config(args.dataset_config)
|
|
ignored = ["train_data_dir", "reg_data_dir", "in_json"]
|
|
if any(getattr(args, attr) is not None for attr in ignored):
|
|
print(
|
|
"ignoring the following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
|
|
", ".join(ignored)
|
|
)
|
|
)
|
|
else:
|
|
if use_dreambooth_method:
|
|
print("Using DreamBooth method.")
|
|
user_config = {
|
|
"datasets": [
|
|
{
|
|
"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs(
|
|
args.train_data_dir, args.reg_data_dir
|
|
)
|
|
}
|
|
]
|
|
}
|
|
else:
|
|
print("Training with captions.")
|
|
user_config = {
|
|
"datasets": [
|
|
{
|
|
"subsets": [
|
|
{
|
|
"image_dir": args.train_data_dir,
|
|
"metadata_file": args.in_json,
|
|
}
|
|
]
|
|
}
|
|
]
|
|
}
|
|
|
|
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer)
|
|
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
|
|
else:
|
|
|
|
train_dataset_group = train_util.load_arbitrary_dataset(args, tokenizer)
|
|
|
|
current_epoch = Value("i", 0)
|
|
current_step = Value("i", 0)
|
|
ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None
|
|
collator = train_util.collator_class(current_epoch, current_step, ds_for_collator)
|
|
|
|
if args.debug_dataset:
|
|
train_util.debug_dataset(train_dataset_group)
|
|
return
|
|
if len(train_dataset_group) == 0:
|
|
print(
|
|
"No data found. Please verify arguments (train_data_dir must be the parent of folders with images) / 画像がありません。引数指定を確認してください(train_data_dirには画像があるフォルダではなく、画像があるフォルダの親フォルダを指定する必要があります)"
|
|
)
|
|
return
|
|
|
|
if cache_latents:
|
|
assert (
|
|
train_dataset_group.is_latent_cacheable()
|
|
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"
|
|
|
|
self.assert_extra_args(args, train_dataset_group)
|
|
|
|
|
|
print("preparing accelerator")
|
|
accelerator = train_util.prepare_accelerator(args)
|
|
is_main_process = accelerator.is_main_process
|
|
|
|
|
|
weight_dtype, save_dtype = train_util.prepare_dtype(args)
|
|
vae_dtype = torch.float32 if args.no_half_vae else weight_dtype
|
|
|
|
|
|
model_version, text_encoder, vae, unet = self.load_target_model(args, weight_dtype, accelerator)
|
|
|
|
|
|
text_encoders = text_encoder if isinstance(text_encoder, list) else [text_encoder]
|
|
|
|
|
|
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers, args.sdpa)
|
|
if torch.__version__ >= "2.0.0":
|
|
vae.set_use_memory_efficient_attention_xformers(args.xformers)
|
|
|
|
|
|
sys.path.append(os.path.dirname(__file__))
|
|
accelerator.print("import network module:", args.network_module)
|
|
network_module = importlib.import_module(args.network_module)
|
|
|
|
if args.base_weights is not None:
|
|
|
|
for i, weight_path in enumerate(args.base_weights):
|
|
if args.base_weights_multiplier is None or len(args.base_weights_multiplier) <= i:
|
|
multiplier = 1.0
|
|
else:
|
|
multiplier = args.base_weights_multiplier[i]
|
|
|
|
accelerator.print(f"merging module: {weight_path} with multiplier {multiplier}")
|
|
|
|
module, weights_sd = network_module.create_network_from_weights(
|
|
multiplier, weight_path, vae, text_encoder, unet, for_inference=True
|
|
)
|
|
module.merge_to(text_encoder, unet, weights_sd, weight_dtype, accelerator.device if args.lowram else "cpu")
|
|
|
|
accelerator.print(f"all weights merged: {', '.join(args.base_weights)}")
|
|
|
|
|
|
if cache_latents:
|
|
vae.to(accelerator.device, dtype=vae_dtype)
|
|
vae.requires_grad_(False)
|
|
vae.eval()
|
|
with torch.no_grad():
|
|
train_dataset_group.cache_latents(vae, args.vae_batch_size, args.cache_latents_to_disk, accelerator.is_main_process)
|
|
vae.to("cpu")
|
|
if torch.cuda.is_available():
|
|
torch.cuda.empty_cache()
|
|
gc.collect()
|
|
|
|
accelerator.wait_for_everyone()
|
|
|
|
|
|
self.cache_text_encoder_outputs_if_needed(
|
|
args, accelerator, unet, vae, tokenizers, text_encoders, train_dataset_group, weight_dtype
|
|
)
|
|
|
|
|
|
net_kwargs = {}
|
|
if args.network_args is not None:
|
|
for net_arg in args.network_args:
|
|
key, value = net_arg.split("=")
|
|
net_kwargs[key] = value
|
|
|
|
|
|
if args.dim_from_weights:
|
|
network, _ = network_module.create_network_from_weights(1, args.network_weights, vae, text_encoder, unet, **net_kwargs)
|
|
else:
|
|
if "dropout" not in net_kwargs:
|
|
|
|
net_kwargs["dropout"] = args.network_dropout
|
|
|
|
network = network_module.create_network(
|
|
1.0,
|
|
args.network_dim,
|
|
args.network_alpha,
|
|
vae,
|
|
text_encoder,
|
|
unet,
|
|
neuron_dropout=args.network_dropout,
|
|
**net_kwargs,
|
|
)
|
|
if network is None:
|
|
return
|
|
|
|
if hasattr(network, "prepare_network"):
|
|
network.prepare_network(args)
|
|
if args.scale_weight_norms and not hasattr(network, "apply_max_norm_regularization"):
|
|
print(
|
|
"warning: scale_weight_norms is specified but the network does not support it / scale_weight_normsが指定されていますが、ネットワークが対応していません"
|
|
)
|
|
args.scale_weight_norms = False
|
|
|
|
train_unet = not args.network_train_text_encoder_only
|
|
train_text_encoder = self.is_train_text_encoder(args)
|
|
network.apply_to(text_encoder, unet, train_text_encoder, train_unet)
|
|
|
|
if args.network_weights is not None:
|
|
info = network.load_weights(args.network_weights)
|
|
accelerator.print(f"load network weights from {args.network_weights}: {info}")
|
|
|
|
if args.gradient_checkpointing:
|
|
unet.enable_gradient_checkpointing()
|
|
for t_enc in text_encoders:
|
|
t_enc.gradient_checkpointing_enable()
|
|
del t_enc
|
|
network.enable_gradient_checkpointing()
|
|
|
|
|
|
accelerator.print("prepare optimizer, data loader etc.")
|
|
|
|
|
|
try:
|
|
trainable_params = network.prepare_optimizer_params(args.text_encoder_lr, args.unet_lr, args.learning_rate)
|
|
except TypeError:
|
|
accelerator.print(
|
|
"Deprecated: use prepare_optimizer_params(text_encoder_lr, unet_lr, learning_rate) instead of prepare_optimizer_params(text_encoder_lr, unet_lr)"
|
|
)
|
|
trainable_params = network.prepare_optimizer_params(args.text_encoder_lr, args.unet_lr)
|
|
|
|
optimizer_name, optimizer_args, optimizer = train_util.get_optimizer(args, trainable_params)
|
|
|
|
|
|
|
|
n_workers = min(args.max_data_loader_n_workers, os.cpu_count() - 1)
|
|
|
|
train_dataloader = torch.utils.data.DataLoader(
|
|
train_dataset_group,
|
|
batch_size=1,
|
|
shuffle=True,
|
|
collate_fn=collator,
|
|
num_workers=n_workers,
|
|
persistent_workers=args.persistent_data_loader_workers,
|
|
)
|
|
|
|
|
|
if args.max_train_epochs is not None:
|
|
args.max_train_steps = args.max_train_epochs * math.ceil(
|
|
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
|
|
)
|
|
accelerator.print(
|
|
f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}"
|
|
)
|
|
|
|
|
|
train_dataset_group.set_max_train_steps(args.max_train_steps)
|
|
|
|
|
|
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
|
|
|
|
|
|
if args.full_fp16:
|
|
assert (
|
|
args.mixed_precision == "fp16"
|
|
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
|
|
accelerator.print("enable full fp16 training.")
|
|
network.to(weight_dtype)
|
|
elif args.full_bf16:
|
|
assert (
|
|
args.mixed_precision == "bf16"
|
|
), "full_bf16 requires mixed precision='bf16' / full_bf16を使う場合はmixed_precision='bf16'を指定してください。"
|
|
accelerator.print("enable full bf16 training.")
|
|
network.to(weight_dtype)
|
|
|
|
unet.requires_grad_(False)
|
|
unet.to(dtype=weight_dtype)
|
|
for t_enc in text_encoders:
|
|
t_enc.requires_grad_(False)
|
|
|
|
|
|
|
|
if train_unet and train_text_encoder:
|
|
if len(text_encoders) > 1:
|
|
unet, t_enc1, t_enc2, network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
|
unet, text_encoders[0], text_encoders[1], network, optimizer, train_dataloader, lr_scheduler
|
|
)
|
|
text_encoder = text_encoders = [t_enc1, t_enc2]
|
|
del t_enc1, t_enc2
|
|
else:
|
|
unet, text_encoder, network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
|
unet, text_encoder, network, optimizer, train_dataloader, lr_scheduler
|
|
)
|
|
text_encoders = [text_encoder]
|
|
elif train_unet:
|
|
unet, network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
|
unet, network, optimizer, train_dataloader, lr_scheduler
|
|
)
|
|
for t_enc in text_encoders:
|
|
t_enc.to(accelerator.device, dtype=weight_dtype)
|
|
elif train_text_encoder:
|
|
if len(text_encoders) > 1:
|
|
t_enc1, t_enc2, network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
|
text_encoders[0], text_encoders[1], network, optimizer, train_dataloader, lr_scheduler
|
|
)
|
|
text_encoder = text_encoders = [t_enc1, t_enc2]
|
|
del t_enc1, t_enc2
|
|
else:
|
|
text_encoder, network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
|
text_encoder, network, optimizer, train_dataloader, lr_scheduler
|
|
)
|
|
text_encoders = [text_encoder]
|
|
|
|
unet.to(accelerator.device, dtype=weight_dtype)
|
|
else:
|
|
network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
|
network, optimizer, train_dataloader, lr_scheduler
|
|
)
|
|
|
|
|
|
text_encoders = train_util.transform_models_if_DDP(text_encoders)
|
|
unet, network = train_util.transform_models_if_DDP([unet, network])
|
|
|
|
if args.gradient_checkpointing:
|
|
|
|
unet.train()
|
|
for t_enc in text_encoders:
|
|
t_enc.train()
|
|
|
|
|
|
if train_text_encoder:
|
|
t_enc.text_model.embeddings.requires_grad_(True)
|
|
|
|
|
|
if not train_text_encoder:
|
|
unet.parameters().__next__().requires_grad_(True)
|
|
else:
|
|
unet.eval()
|
|
for t_enc in text_encoders:
|
|
t_enc.eval()
|
|
|
|
del t_enc
|
|
|
|
network.prepare_grad_etc(text_encoder, unet)
|
|
|
|
if not cache_latents:
|
|
vae.requires_grad_(False)
|
|
vae.eval()
|
|
vae.to(accelerator.device, dtype=vae_dtype)
|
|
|
|
|
|
if args.full_fp16:
|
|
train_util.patch_accelerator_for_fp16_training(accelerator)
|
|
|
|
|
|
train_util.resume_from_local_or_hf_if_specified(accelerator, args)
|
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
|
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
|
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
|
|
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
|
|
|
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
|
|
|
accelerator.print("running training / 学習開始")
|
|
accelerator.print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}")
|
|
accelerator.print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}")
|
|
accelerator.print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
|
|
accelerator.print(f" num epochs / epoch数: {num_train_epochs}")
|
|
accelerator.print(
|
|
f" batch size per device / バッチサイズ: {', '.join([str(d.batch_size) for d in train_dataset_group.datasets])}"
|
|
)
|
|
|
|
accelerator.print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
|
|
accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
|
|
|
|
|
|
metadata = {
|
|
"ss_session_id": session_id,
|
|
"ss_training_started_at": training_started_at,
|
|
"ss_output_name": args.output_name,
|
|
"ss_learning_rate": args.learning_rate,
|
|
"ss_text_encoder_lr": args.text_encoder_lr,
|
|
"ss_unet_lr": args.unet_lr,
|
|
"ss_num_train_images": train_dataset_group.num_train_images,
|
|
"ss_num_reg_images": train_dataset_group.num_reg_images,
|
|
"ss_num_batches_per_epoch": len(train_dataloader),
|
|
"ss_num_epochs": num_train_epochs,
|
|
"ss_gradient_checkpointing": args.gradient_checkpointing,
|
|
"ss_gradient_accumulation_steps": args.gradient_accumulation_steps,
|
|
"ss_max_train_steps": args.max_train_steps,
|
|
"ss_lr_warmup_steps": args.lr_warmup_steps,
|
|
"ss_lr_scheduler": args.lr_scheduler,
|
|
"ss_network_module": args.network_module,
|
|
"ss_network_dim": args.network_dim,
|
|
"ss_network_alpha": args.network_alpha,
|
|
"ss_network_dropout": args.network_dropout,
|
|
"ss_mixed_precision": args.mixed_precision,
|
|
"ss_full_fp16": bool(args.full_fp16),
|
|
"ss_v2": bool(args.v2),
|
|
"ss_base_model_version": model_version,
|
|
"ss_clip_skip": args.clip_skip,
|
|
"ss_max_token_length": args.max_token_length,
|
|
"ss_cache_latents": bool(args.cache_latents),
|
|
"ss_seed": args.seed,
|
|
"ss_lowram": args.lowram,
|
|
"ss_noise_offset": args.noise_offset,
|
|
"ss_multires_noise_iterations": args.multires_noise_iterations,
|
|
"ss_multires_noise_discount": args.multires_noise_discount,
|
|
"ss_adaptive_noise_scale": args.adaptive_noise_scale,
|
|
"ss_zero_terminal_snr": args.zero_terminal_snr,
|
|
"ss_training_comment": args.training_comment,
|
|
"ss_sd_scripts_commit_hash": train_util.get_git_revision_hash(),
|
|
"ss_optimizer": optimizer_name + (f"({optimizer_args})" if len(optimizer_args) > 0 else ""),
|
|
"ss_max_grad_norm": args.max_grad_norm,
|
|
"ss_caption_dropout_rate": args.caption_dropout_rate,
|
|
"ss_caption_dropout_every_n_epochs": args.caption_dropout_every_n_epochs,
|
|
"ss_caption_tag_dropout_rate": args.caption_tag_dropout_rate,
|
|
"ss_face_crop_aug_range": args.face_crop_aug_range,
|
|
"ss_prior_loss_weight": args.prior_loss_weight,
|
|
"ss_min_snr_gamma": args.min_snr_gamma,
|
|
"ss_scale_weight_norms": args.scale_weight_norms,
|
|
"ss_ip_noise_gamma": args.ip_noise_gamma,
|
|
"ss_debiased_estimation": bool(args.debiased_estimation_loss),
|
|
}
|
|
|
|
if use_user_config:
|
|
|
|
|
|
|
|
datasets_metadata = []
|
|
tag_frequency = {}
|
|
dataset_dirs_info = {}
|
|
|
|
for dataset in train_dataset_group.datasets:
|
|
is_dreambooth_dataset = isinstance(dataset, DreamBoothDataset)
|
|
dataset_metadata = {
|
|
"is_dreambooth": is_dreambooth_dataset,
|
|
"batch_size_per_device": dataset.batch_size,
|
|
"num_train_images": dataset.num_train_images,
|
|
"num_reg_images": dataset.num_reg_images,
|
|
"resolution": (dataset.width, dataset.height),
|
|
"enable_bucket": bool(dataset.enable_bucket),
|
|
"min_bucket_reso": dataset.min_bucket_reso,
|
|
"max_bucket_reso": dataset.max_bucket_reso,
|
|
"tag_frequency": dataset.tag_frequency,
|
|
"bucket_info": dataset.bucket_info,
|
|
}
|
|
|
|
subsets_metadata = []
|
|
for subset in dataset.subsets:
|
|
subset_metadata = {
|
|
"img_count": subset.img_count,
|
|
"num_repeats": subset.num_repeats,
|
|
"color_aug": bool(subset.color_aug),
|
|
"flip_aug": bool(subset.flip_aug),
|
|
"random_crop": bool(subset.random_crop),
|
|
"shuffle_caption": bool(subset.shuffle_caption),
|
|
"keep_tokens": subset.keep_tokens,
|
|
}
|
|
|
|
image_dir_or_metadata_file = None
|
|
if subset.image_dir:
|
|
image_dir = os.path.basename(subset.image_dir)
|
|
subset_metadata["image_dir"] = image_dir
|
|
image_dir_or_metadata_file = image_dir
|
|
|
|
if is_dreambooth_dataset:
|
|
subset_metadata["class_tokens"] = subset.class_tokens
|
|
subset_metadata["is_reg"] = subset.is_reg
|
|
if subset.is_reg:
|
|
image_dir_or_metadata_file = None
|
|
else:
|
|
metadata_file = os.path.basename(subset.metadata_file)
|
|
subset_metadata["metadata_file"] = metadata_file
|
|
image_dir_or_metadata_file = metadata_file
|
|
|
|
subsets_metadata.append(subset_metadata)
|
|
|
|
|
|
|
|
if image_dir_or_metadata_file is not None:
|
|
|
|
v = image_dir_or_metadata_file
|
|
i = 2
|
|
while v in dataset_dirs_info:
|
|
v = image_dir_or_metadata_file + f" ({i})"
|
|
i += 1
|
|
image_dir_or_metadata_file = v
|
|
|
|
dataset_dirs_info[image_dir_or_metadata_file] = {
|
|
"n_repeats": subset.num_repeats,
|
|
"img_count": subset.img_count,
|
|
}
|
|
|
|
dataset_metadata["subsets"] = subsets_metadata
|
|
datasets_metadata.append(dataset_metadata)
|
|
|
|
|
|
for ds_dir_name, ds_freq_for_dir in dataset.tag_frequency.items():
|
|
|
|
|
|
|
|
if ds_dir_name in tag_frequency:
|
|
continue
|
|
tag_frequency[ds_dir_name] = ds_freq_for_dir
|
|
|
|
metadata["ss_datasets"] = json.dumps(datasets_metadata)
|
|
metadata["ss_tag_frequency"] = json.dumps(tag_frequency)
|
|
metadata["ss_dataset_dirs"] = json.dumps(dataset_dirs_info)
|
|
else:
|
|
|
|
assert (
|
|
len(train_dataset_group.datasets) == 1
|
|
), f"There should be a single dataset but {len(train_dataset_group.datasets)} found. This seems to be a bug. / データセットは1個だけ存在するはずですが、実際には{len(train_dataset_group.datasets)}個でした。プログラムのバグかもしれません。"
|
|
|
|
dataset = train_dataset_group.datasets[0]
|
|
|
|
dataset_dirs_info = {}
|
|
reg_dataset_dirs_info = {}
|
|
if use_dreambooth_method:
|
|
for subset in dataset.subsets:
|
|
info = reg_dataset_dirs_info if subset.is_reg else dataset_dirs_info
|
|
info[os.path.basename(subset.image_dir)] = {"n_repeats": subset.num_repeats, "img_count": subset.img_count}
|
|
else:
|
|
for subset in dataset.subsets:
|
|
dataset_dirs_info[os.path.basename(subset.metadata_file)] = {
|
|
"n_repeats": subset.num_repeats,
|
|
"img_count": subset.img_count,
|
|
}
|
|
|
|
metadata.update(
|
|
{
|
|
"ss_batch_size_per_device": args.train_batch_size,
|
|
"ss_total_batch_size": total_batch_size,
|
|
"ss_resolution": args.resolution,
|
|
"ss_color_aug": bool(args.color_aug),
|
|
"ss_flip_aug": bool(args.flip_aug),
|
|
"ss_random_crop": bool(args.random_crop),
|
|
"ss_shuffle_caption": bool(args.shuffle_caption),
|
|
"ss_enable_bucket": bool(dataset.enable_bucket),
|
|
"ss_bucket_no_upscale": bool(dataset.bucket_no_upscale),
|
|
"ss_min_bucket_reso": dataset.min_bucket_reso,
|
|
"ss_max_bucket_reso": dataset.max_bucket_reso,
|
|
"ss_keep_tokens": args.keep_tokens,
|
|
"ss_dataset_dirs": json.dumps(dataset_dirs_info),
|
|
"ss_reg_dataset_dirs": json.dumps(reg_dataset_dirs_info),
|
|
"ss_tag_frequency": json.dumps(dataset.tag_frequency),
|
|
"ss_bucket_info": json.dumps(dataset.bucket_info),
|
|
}
|
|
)
|
|
|
|
|
|
if args.network_args:
|
|
metadata["ss_network_args"] = json.dumps(net_kwargs)
|
|
|
|
|
|
if args.pretrained_model_name_or_path is not None:
|
|
sd_model_name = args.pretrained_model_name_or_path
|
|
if os.path.exists(sd_model_name):
|
|
metadata["ss_sd_model_hash"] = train_util.model_hash(sd_model_name)
|
|
metadata["ss_new_sd_model_hash"] = train_util.calculate_sha256(sd_model_name)
|
|
sd_model_name = os.path.basename(sd_model_name)
|
|
metadata["ss_sd_model_name"] = sd_model_name
|
|
|
|
if args.vae is not None:
|
|
vae_name = args.vae
|
|
if os.path.exists(vae_name):
|
|
metadata["ss_vae_hash"] = train_util.model_hash(vae_name)
|
|
metadata["ss_new_vae_hash"] = train_util.calculate_sha256(vae_name)
|
|
vae_name = os.path.basename(vae_name)
|
|
metadata["ss_vae_name"] = vae_name
|
|
|
|
metadata = {k: str(v) for k, v in metadata.items()}
|
|
|
|
|
|
minimum_metadata = {}
|
|
for key in train_util.SS_METADATA_MINIMUM_KEYS:
|
|
if key in metadata:
|
|
minimum_metadata[key] = metadata[key]
|
|
|
|
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
|
|
global_step = 0
|
|
|
|
noise_scheduler = DDPMScheduler(
|
|
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False
|
|
)
|
|
prepare_scheduler_for_custom_training(noise_scheduler, accelerator.device)
|
|
if args.zero_terminal_snr:
|
|
custom_train_functions.fix_noise_scheduler_betas_for_zero_terminal_snr(noise_scheduler)
|
|
|
|
if accelerator.is_main_process:
|
|
init_kwargs = {}
|
|
if args.log_tracker_config is not None:
|
|
init_kwargs = toml.load(args.log_tracker_config)
|
|
accelerator.init_trackers(
|
|
"network_train" if args.log_tracker_name is None else args.log_tracker_name, init_kwargs=init_kwargs
|
|
)
|
|
|
|
loss_recorder = train_util.LossRecorder()
|
|
del train_dataset_group
|
|
|
|
|
|
if hasattr(network, "on_step_start"):
|
|
on_step_start = network.on_step_start
|
|
else:
|
|
on_step_start = lambda *args, **kwargs: None
|
|
|
|
|
|
def save_model(ckpt_name, unwrapped_nw, steps, epoch_no, force_sync_upload=False):
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
ckpt_file = os.path.join(args.output_dir, ckpt_name)
|
|
|
|
accelerator.print(f"\nsaving checkpoint: {ckpt_file}")
|
|
metadata["ss_training_finished_at"] = str(time.time())
|
|
metadata["ss_steps"] = str(steps)
|
|
metadata["ss_epoch"] = str(epoch_no)
|
|
|
|
metadata_to_save = minimum_metadata if args.no_metadata else metadata
|
|
sai_metadata = train_util.get_sai_model_spec(None, args, self.is_sdxl, True, False)
|
|
metadata_to_save.update(sai_metadata)
|
|
|
|
unwrapped_nw.save_weights(ckpt_file, save_dtype, metadata_to_save)
|
|
if args.huggingface_repo_id is not None:
|
|
huggingface_util.upload(args, ckpt_file, "/" + ckpt_name, force_sync_upload=force_sync_upload)
|
|
|
|
def remove_model(old_ckpt_name):
|
|
old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name)
|
|
if os.path.exists(old_ckpt_file):
|
|
accelerator.print(f"removing old checkpoint: {old_ckpt_file}")
|
|
os.remove(old_ckpt_file)
|
|
|
|
|
|
for epoch in range(num_train_epochs):
|
|
accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}")
|
|
current_epoch.value = epoch + 1
|
|
|
|
metadata["ss_epoch"] = str(epoch + 1)
|
|
|
|
network.on_epoch_start(text_encoder, unet)
|
|
|
|
for step, batch in enumerate(train_dataloader):
|
|
current_step.value = global_step
|
|
with accelerator.accumulate(network):
|
|
on_step_start(text_encoder, unet)
|
|
|
|
with torch.no_grad():
|
|
if "latents" in batch and batch["latents"] is not None:
|
|
latents = batch["latents"].to(accelerator.device)
|
|
else:
|
|
|
|
latents = vae.encode(batch["images"].to(dtype=vae_dtype)).latent_dist.sample()
|
|
|
|
|
|
if torch.any(torch.isnan(latents)):
|
|
accelerator.print("NaN found in latents, replacing with zeros")
|
|
latents = torch.where(torch.isnan(latents), torch.zeros_like(latents), latents)
|
|
latents = latents * self.vae_scale_factor
|
|
b_size = latents.shape[0]
|
|
|
|
with torch.set_grad_enabled(train_text_encoder), accelerator.autocast():
|
|
|
|
if args.weighted_captions:
|
|
text_encoder_conds = get_weighted_text_embeddings(
|
|
tokenizer,
|
|
text_encoder,
|
|
batch["captions"],
|
|
accelerator.device,
|
|
args.max_token_length // 75 if args.max_token_length else 1,
|
|
clip_skip=args.clip_skip,
|
|
)
|
|
else:
|
|
text_encoder_conds = self.get_text_cond(
|
|
args, accelerator, batch, tokenizers, text_encoders, weight_dtype
|
|
)
|
|
|
|
|
|
|
|
noise, noisy_latents, timesteps = train_util.get_noise_noisy_latents_and_timesteps(
|
|
args, noise_scheduler, latents
|
|
)
|
|
|
|
|
|
with accelerator.autocast():
|
|
noise_pred = self.call_unet(
|
|
args, accelerator, unet, noisy_latents, timesteps, text_encoder_conds, batch, weight_dtype
|
|
)
|
|
|
|
if args.v_parameterization:
|
|
|
|
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
|
else:
|
|
target = noise
|
|
|
|
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
|
|
loss = loss.mean([1, 2, 3])
|
|
|
|
loss_weights = batch["loss_weights"]
|
|
loss = loss * loss_weights
|
|
|
|
if args.min_snr_gamma:
|
|
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma)
|
|
if args.scale_v_pred_loss_like_noise_pred:
|
|
loss = scale_v_prediction_loss_like_noise_prediction(loss, timesteps, noise_scheduler)
|
|
if args.v_pred_like_loss:
|
|
loss = add_v_prediction_like_loss(loss, timesteps, noise_scheduler, args.v_pred_like_loss)
|
|
if args.debiased_estimation_loss:
|
|
loss = apply_debiased_estimation(loss, timesteps, noise_scheduler)
|
|
|
|
loss = loss.mean()
|
|
|
|
accelerator.backward(loss)
|
|
if accelerator.sync_gradients and args.max_grad_norm != 0.0:
|
|
params_to_clip = network.get_trainable_params()
|
|
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
|
|
|
|
optimizer.step()
|
|
lr_scheduler.step()
|
|
optimizer.zero_grad(set_to_none=True)
|
|
|
|
if args.scale_weight_norms:
|
|
keys_scaled, mean_norm, maximum_norm = network.apply_max_norm_regularization(
|
|
args.scale_weight_norms, accelerator.device
|
|
)
|
|
max_mean_logs = {"Keys Scaled": keys_scaled, "Average key norm": mean_norm}
|
|
else:
|
|
keys_scaled, mean_norm, maximum_norm = None, None, None
|
|
|
|
|
|
if accelerator.sync_gradients:
|
|
progress_bar.update(1)
|
|
global_step += 1
|
|
|
|
self.sample_images(accelerator, args, None, global_step, accelerator.device, vae, tokenizer, text_encoder, unet)
|
|
|
|
|
|
if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0:
|
|
accelerator.wait_for_everyone()
|
|
if accelerator.is_main_process:
|
|
ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, global_step)
|
|
save_model(ckpt_name, accelerator.unwrap_model(network), global_step, epoch)
|
|
|
|
if args.save_state:
|
|
train_util.save_and_remove_state_stepwise(args, accelerator, global_step)
|
|
|
|
remove_step_no = train_util.get_remove_step_no(args, global_step)
|
|
if remove_step_no is not None:
|
|
remove_ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, remove_step_no)
|
|
remove_model(remove_ckpt_name)
|
|
|
|
current_loss = loss.detach().item()
|
|
loss_recorder.add(epoch=epoch, step=step, loss=current_loss)
|
|
avr_loss: float = loss_recorder.moving_average
|
|
logs = {"avr_loss": avr_loss}
|
|
progress_bar.set_postfix(**logs)
|
|
|
|
if args.scale_weight_norms:
|
|
progress_bar.set_postfix(**{**max_mean_logs, **logs})
|
|
|
|
if args.logging_dir is not None:
|
|
logs = self.generate_step_logs(args, current_loss, avr_loss, lr_scheduler, keys_scaled, mean_norm, maximum_norm)
|
|
accelerator.log(logs, step=global_step)
|
|
|
|
if global_step >= args.max_train_steps:
|
|
break
|
|
|
|
if args.logging_dir is not None:
|
|
logs = {"loss/epoch": loss_recorder.moving_average}
|
|
accelerator.log(logs, step=epoch + 1)
|
|
|
|
accelerator.wait_for_everyone()
|
|
|
|
|
|
if args.save_every_n_epochs is not None:
|
|
saving = (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs
|
|
if is_main_process and saving:
|
|
ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, epoch + 1)
|
|
save_model(ckpt_name, accelerator.unwrap_model(network), global_step, epoch + 1)
|
|
|
|
remove_epoch_no = train_util.get_remove_epoch_no(args, epoch + 1)
|
|
if remove_epoch_no is not None:
|
|
remove_ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, remove_epoch_no)
|
|
remove_model(remove_ckpt_name)
|
|
|
|
if args.save_state:
|
|
train_util.save_and_remove_state_on_epoch_end(args, accelerator, epoch + 1)
|
|
|
|
self.sample_images(accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizer, text_encoder, unet)
|
|
|
|
|
|
|
|
|
|
metadata["ss_training_finished_at"] = str(time.time())
|
|
|
|
if is_main_process:
|
|
network = accelerator.unwrap_model(network)
|
|
|
|
accelerator.end_training()
|
|
|
|
if is_main_process and args.save_state:
|
|
train_util.save_state_on_train_end(args, accelerator)
|
|
|
|
if is_main_process:
|
|
ckpt_name = train_util.get_last_ckpt_name(args, "." + args.save_model_as)
|
|
save_model(ckpt_name, network, global_step, num_train_epochs, force_sync_upload=True)
|
|
|
|
print("model saved.")
|
|
|
|
|
|
def setup_parser() -> argparse.ArgumentParser:
|
|
parser = argparse.ArgumentParser()
|
|
|
|
train_util.add_sd_models_arguments(parser)
|
|
train_util.add_dataset_arguments(parser, True, True, True)
|
|
train_util.add_training_arguments(parser, True)
|
|
train_util.add_optimizer_arguments(parser)
|
|
config_util.add_config_arguments(parser)
|
|
custom_train_functions.add_custom_train_arguments(parser)
|
|
|
|
parser.add_argument("--no_metadata", action="store_true", help="do not save metadata in output model / メタデータを出力先モデルに保存しない")
|
|
parser.add_argument(
|
|
"--save_model_as",
|
|
type=str,
|
|
default="safetensors",
|
|
choices=[None, "ckpt", "pt", "safetensors"],
|
|
help="format to save the model (default is .safetensors) / モデル保存時の形式(デフォルトはsafetensors)",
|
|
)
|
|
|
|
parser.add_argument("--unet_lr", type=float, default=None, help="learning rate for U-Net / U-Netの学習率")
|
|
parser.add_argument("--text_encoder_lr", type=float, default=None, help="learning rate for Text Encoder / Text Encoderの学習率")
|
|
|
|
parser.add_argument("--network_weights", type=str, default=None, help="pretrained weights for network / 学習するネットワークの初期重み")
|
|
parser.add_argument("--network_module", type=str, default=None, help="network module to train / 学習対象のネットワークのモジュール")
|
|
parser.add_argument(
|
|
"--network_dim", type=int, default=None, help="network dimensions (depends on each network) / モジュールの次元数(ネットワークにより定義は異なります)"
|
|
)
|
|
parser.add_argument(
|
|
"--network_alpha",
|
|
type=float,
|
|
default=1,
|
|
help="alpha for LoRA weight scaling, default 1 (same as network_dim for same behavior as old version) / LoRaの重み調整のalpha値、デフォルト1(旧バージョンと同じ動作をするにはnetwork_dimと同じ値を指定)",
|
|
)
|
|
parser.add_argument(
|
|
"--network_dropout",
|
|
type=float,
|
|
default=None,
|
|
help="Drops neurons out of training every step (0 or None is default behavior (no dropout), 1 would drop all neurons) / 訓練時に毎ステップでニューロンをdropする(0またはNoneはdropoutなし、1は全ニューロンをdropout)",
|
|
)
|
|
parser.add_argument(
|
|
"--network_args", type=str, default=None, nargs="*", help="additional arguments for network (key=value) / ネットワークへの追加の引数"
|
|
)
|
|
parser.add_argument("--network_train_unet_only", action="store_true", help="only training U-Net part / U-Net関連部分のみ学習する")
|
|
parser.add_argument(
|
|
"--network_train_text_encoder_only", action="store_true", help="only training Text Encoder part / Text Encoder関連部分のみ学習する"
|
|
)
|
|
parser.add_argument(
|
|
"--training_comment", type=str, default=None, help="arbitrary comment string stored in metadata / メタデータに記録する任意のコメント文字列"
|
|
)
|
|
parser.add_argument(
|
|
"--dim_from_weights",
|
|
action="store_true",
|
|
help="automatically determine dim (rank) from network_weights / dim (rank)をnetwork_weightsで指定した重みから自動で決定する",
|
|
)
|
|
parser.add_argument(
|
|
"--scale_weight_norms",
|
|
type=float,
|
|
default=None,
|
|
help="Scale the weight of each key pair to help prevent overtraing via exploding gradients. (1 is a good starting point) / 重みの値をスケーリングして勾配爆発を防ぐ(1が初期値としては適当)",
|
|
)
|
|
parser.add_argument(
|
|
"--base_weights",
|
|
type=str,
|
|
default=None,
|
|
nargs="*",
|
|
help="network weights to merge into the model before training / 学習前にあらかじめモデルにマージするnetworkの重みファイル",
|
|
)
|
|
parser.add_argument(
|
|
"--base_weights_multiplier",
|
|
type=float,
|
|
default=None,
|
|
nargs="*",
|
|
help="multiplier for network weights to merge into the model before training / 学習前にあらかじめモデルにマージするnetworkの重みの倍率",
|
|
)
|
|
parser.add_argument(
|
|
"--no_half_vae",
|
|
action="store_true",
|
|
help="do not use fp16/bf16 VAE in mixed precision (use float VAE) / mixed precisionでも fp16/bf16 VAEを使わずfloat VAEを使う",
|
|
)
|
|
return parser
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = setup_parser()
|
|
|
|
args = parser.parse_args()
|
|
args = train_util.read_config_from_file(args, parser)
|
|
|
|
trainer = NetworkTrainer()
|
|
trainer.train(args)
|
|
|