|
import argparse
|
|
import gc
|
|
import math
|
|
import os
|
|
from multiprocessing import Value
|
|
import toml
|
|
|
|
from tqdm import tqdm
|
|
import torch
|
|
try:
|
|
import intel_extension_for_pytorch as ipex
|
|
if torch.xpu.is_available():
|
|
from library.ipex import ipex_init
|
|
ipex_init()
|
|
except Exception:
|
|
pass
|
|
from accelerate.utils import set_seed
|
|
from diffusers import DDPMScheduler
|
|
from transformers import CLIPTokenizer
|
|
from library import model_util
|
|
|
|
import library.train_util as train_util
|
|
import library.huggingface_util as huggingface_util
|
|
import library.config_util as config_util
|
|
from library.config_util import (
|
|
ConfigSanitizer,
|
|
BlueprintGenerator,
|
|
)
|
|
import library.custom_train_functions as custom_train_functions
|
|
from library.custom_train_functions import (
|
|
apply_snr_weight,
|
|
prepare_scheduler_for_custom_training,
|
|
scale_v_prediction_loss_like_noise_prediction,
|
|
add_v_prediction_like_loss,
|
|
apply_debiased_estimation,
|
|
)
|
|
|
|
imagenet_templates_small = [
|
|
"a photo of a {}",
|
|
"a rendering of a {}",
|
|
"a cropped photo of the {}",
|
|
"the photo of a {}",
|
|
"a photo of a clean {}",
|
|
"a photo of a dirty {}",
|
|
"a dark photo of the {}",
|
|
"a photo of my {}",
|
|
"a photo of the cool {}",
|
|
"a close-up photo of a {}",
|
|
"a bright photo of the {}",
|
|
"a cropped photo of a {}",
|
|
"a photo of the {}",
|
|
"a good photo of the {}",
|
|
"a photo of one {}",
|
|
"a close-up photo of the {}",
|
|
"a rendition of the {}",
|
|
"a photo of the clean {}",
|
|
"a rendition of a {}",
|
|
"a photo of a nice {}",
|
|
"a good photo of a {}",
|
|
"a photo of the nice {}",
|
|
"a photo of the small {}",
|
|
"a photo of the weird {}",
|
|
"a photo of the large {}",
|
|
"a photo of a cool {}",
|
|
"a photo of a small {}",
|
|
]
|
|
|
|
imagenet_style_templates_small = [
|
|
"a painting in the style of {}",
|
|
"a rendering in the style of {}",
|
|
"a cropped painting in the style of {}",
|
|
"the painting in the style of {}",
|
|
"a clean painting in the style of {}",
|
|
"a dirty painting in the style of {}",
|
|
"a dark painting in the style of {}",
|
|
"a picture in the style of {}",
|
|
"a cool painting in the style of {}",
|
|
"a close-up painting in the style of {}",
|
|
"a bright painting in the style of {}",
|
|
"a cropped painting in the style of {}",
|
|
"a good painting in the style of {}",
|
|
"a close-up painting in the style of {}",
|
|
"a rendition in the style of {}",
|
|
"a nice painting in the style of {}",
|
|
"a small painting in the style of {}",
|
|
"a weird painting in the style of {}",
|
|
"a large painting in the style of {}",
|
|
]
|
|
|
|
|
|
class TextualInversionTrainer:
|
|
def __init__(self):
|
|
self.vae_scale_factor = 0.18215
|
|
self.is_sdxl = False
|
|
|
|
def assert_extra_args(self, args, train_dataset_group):
|
|
pass
|
|
|
|
def load_target_model(self, args, weight_dtype, accelerator):
|
|
text_encoder, vae, unet, _ = train_util.load_target_model(args, weight_dtype, accelerator)
|
|
return model_util.get_model_version_str_for_sd1_sd2(args.v2, args.v_parameterization), text_encoder, vae, unet
|
|
|
|
def load_tokenizer(self, args):
|
|
tokenizer = train_util.load_tokenizer(args)
|
|
return tokenizer
|
|
|
|
def assert_token_string(self, token_string, tokenizers: CLIPTokenizer):
|
|
pass
|
|
|
|
def get_text_cond(self, args, accelerator, batch, tokenizers, text_encoders, weight_dtype):
|
|
with torch.enable_grad():
|
|
input_ids = batch["input_ids"].to(accelerator.device)
|
|
encoder_hidden_states = train_util.get_hidden_states(args, input_ids, tokenizers[0], text_encoders[0], None)
|
|
return encoder_hidden_states
|
|
|
|
def call_unet(self, args, accelerator, unet, noisy_latents, timesteps, text_conds, batch, weight_dtype):
|
|
noise_pred = unet(noisy_latents, timesteps, text_conds).sample
|
|
return noise_pred
|
|
|
|
def sample_images(self, accelerator, args, epoch, global_step, device, vae, tokenizer, text_encoder, unet, prompt_replacement):
|
|
train_util.sample_images(
|
|
accelerator, args, epoch, global_step, device, vae, tokenizer, text_encoder, unet, prompt_replacement
|
|
)
|
|
|
|
def save_weights(self, file, updated_embs, save_dtype, metadata):
|
|
state_dict = {"emb_params": updated_embs[0]}
|
|
|
|
if save_dtype is not None:
|
|
for key in list(state_dict.keys()):
|
|
v = state_dict[key]
|
|
v = v.detach().clone().to("cpu").to(save_dtype)
|
|
state_dict[key] = v
|
|
|
|
if os.path.splitext(file)[1] == ".safetensors":
|
|
from safetensors.torch import save_file
|
|
|
|
save_file(state_dict, file, metadata)
|
|
else:
|
|
torch.save(state_dict, file)
|
|
|
|
def load_weights(self, file):
|
|
if os.path.splitext(file)[1] == ".safetensors":
|
|
from safetensors.torch import load_file
|
|
|
|
data = load_file(file)
|
|
else:
|
|
|
|
data = torch.load(file, map_location="cpu")
|
|
if type(data) != dict:
|
|
raise ValueError(f"weight file is not dict / 重みファイルがdict形式ではありません: {file}")
|
|
|
|
if "string_to_param" in data:
|
|
data = data["string_to_param"]
|
|
if hasattr(data, "_parameters"):
|
|
data = getattr(data, "_parameters")
|
|
|
|
emb = next(iter(data.values()))
|
|
if type(emb) != torch.Tensor:
|
|
raise ValueError(f"weight file does not contains Tensor / 重みファイルのデータがTensorではありません: {file}")
|
|
|
|
if len(emb.size()) == 1:
|
|
emb = emb.unsqueeze(0)
|
|
|
|
return [emb]
|
|
|
|
def train(self, args):
|
|
if args.output_name is None:
|
|
args.output_name = args.token_string
|
|
use_template = args.use_object_template or args.use_style_template
|
|
|
|
train_util.verify_training_args(args)
|
|
train_util.prepare_dataset_args(args, True)
|
|
|
|
cache_latents = args.cache_latents
|
|
|
|
if args.seed is not None:
|
|
set_seed(args.seed)
|
|
|
|
tokenizer_or_list = self.load_tokenizer(args)
|
|
tokenizers = tokenizer_or_list if isinstance(tokenizer_or_list, list) else [tokenizer_or_list]
|
|
|
|
|
|
print("prepare accelerator")
|
|
accelerator = train_util.prepare_accelerator(args)
|
|
|
|
|
|
weight_dtype, save_dtype = train_util.prepare_dtype(args)
|
|
vae_dtype = torch.float32 if args.no_half_vae else weight_dtype
|
|
|
|
|
|
model_version, text_encoder_or_list, vae, unet = self.load_target_model(args, weight_dtype, accelerator)
|
|
text_encoders = [text_encoder_or_list] if not isinstance(text_encoder_or_list, list) else text_encoder_or_list
|
|
|
|
if len(text_encoders) > 1 and args.gradient_accumulation_steps > 1:
|
|
accelerator.print(
|
|
"accelerate doesn't seem to support gradient_accumulation_steps for multiple models (text encoders) / "
|
|
+ "accelerateでは複数のモデル(テキストエンコーダー)のgradient_accumulation_stepsはサポートされていないようです"
|
|
)
|
|
|
|
|
|
init_token_ids_list = []
|
|
if args.init_word is not None:
|
|
for i, tokenizer in enumerate(tokenizers):
|
|
init_token_ids = tokenizer.encode(args.init_word, add_special_tokens=False)
|
|
if len(init_token_ids) > 1 and len(init_token_ids) != args.num_vectors_per_token:
|
|
accelerator.print(
|
|
f"token length for init words is not same to num_vectors_per_token, init words is repeated or truncated / "
|
|
+ f"初期化単語のトークン長がnum_vectors_per_tokenと合わないため、繰り返しまたは切り捨てが発生します: tokenizer {i+1}, length {len(init_token_ids)}"
|
|
)
|
|
init_token_ids_list.append(init_token_ids)
|
|
else:
|
|
init_token_ids_list = [None] * len(tokenizers)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.assert_token_string(args.token_string, tokenizers)
|
|
|
|
token_strings = [args.token_string] + [f"{args.token_string}{i+1}" for i in range(args.num_vectors_per_token - 1)]
|
|
token_ids_list = []
|
|
token_embeds_list = []
|
|
for i, (tokenizer, text_encoder, init_token_ids) in enumerate(zip(tokenizers, text_encoders, init_token_ids_list)):
|
|
num_added_tokens = tokenizer.add_tokens(token_strings)
|
|
assert (
|
|
num_added_tokens == args.num_vectors_per_token
|
|
), f"tokenizer has same word to token string. please use another one / 指定したargs.token_stringは既に存在します。別の単語を使ってください: tokenizer {i+1}, {args.token_string}"
|
|
|
|
token_ids = tokenizer.convert_tokens_to_ids(token_strings)
|
|
accelerator.print(f"tokens are added for tokenizer {i+1}: {token_ids}")
|
|
assert (
|
|
min(token_ids) == token_ids[0] and token_ids[-1] == token_ids[0] + len(token_ids) - 1
|
|
), f"token ids is not ordered : tokenizer {i+1}, {token_ids}"
|
|
assert (
|
|
len(tokenizer) - 1 == token_ids[-1]
|
|
), f"token ids is not end of tokenize: tokenizer {i+1}, {token_ids}, {len(tokenizer)}"
|
|
token_ids_list.append(token_ids)
|
|
|
|
|
|
text_encoder.resize_token_embeddings(len(tokenizer))
|
|
|
|
|
|
token_embeds = text_encoder.get_input_embeddings().weight.data
|
|
if init_token_ids is not None:
|
|
for i, token_id in enumerate(token_ids):
|
|
token_embeds[token_id] = token_embeds[init_token_ids[i % len(init_token_ids)]]
|
|
|
|
token_embeds_list.append(token_embeds)
|
|
|
|
|
|
if args.weights is not None:
|
|
embeddings_list = self.load_weights(args.weights)
|
|
assert len(token_ids) == len(
|
|
embeddings_list[0]
|
|
), f"num_vectors_per_token is mismatch for weights / 指定した重みとnum_vectors_per_tokenの値が異なります: {len(embeddings)}"
|
|
|
|
for token_ids, embeddings, token_embeds in zip(token_ids_list, embeddings_list, token_embeds_list):
|
|
for token_id, embedding in zip(token_ids, embeddings):
|
|
token_embeds[token_id] = embedding
|
|
|
|
accelerator.print(f"weighs loaded")
|
|
|
|
accelerator.print(f"create embeddings for {args.num_vectors_per_token} tokens, for {args.token_string}")
|
|
|
|
|
|
if args.dataset_class is None:
|
|
blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, True, False, False))
|
|
if args.dataset_config is not None:
|
|
accelerator.print(f"Load dataset config from {args.dataset_config}")
|
|
user_config = config_util.load_user_config(args.dataset_config)
|
|
ignored = ["train_data_dir", "reg_data_dir", "in_json"]
|
|
if any(getattr(args, attr) is not None for attr in ignored):
|
|
accelerator.print(
|
|
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
|
|
", ".join(ignored)
|
|
)
|
|
)
|
|
else:
|
|
use_dreambooth_method = args.in_json is None
|
|
if use_dreambooth_method:
|
|
accelerator.print("Use DreamBooth method.")
|
|
user_config = {
|
|
"datasets": [
|
|
{
|
|
"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs(
|
|
args.train_data_dir, args.reg_data_dir
|
|
)
|
|
}
|
|
]
|
|
}
|
|
else:
|
|
print("Train with captions.")
|
|
user_config = {
|
|
"datasets": [
|
|
{
|
|
"subsets": [
|
|
{
|
|
"image_dir": args.train_data_dir,
|
|
"metadata_file": args.in_json,
|
|
}
|
|
]
|
|
}
|
|
]
|
|
}
|
|
|
|
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer_or_list)
|
|
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
|
|
else:
|
|
train_dataset_group = train_util.load_arbitrary_dataset(args, tokenizer_or_list)
|
|
|
|
self.assert_extra_args(args, train_dataset_group)
|
|
|
|
current_epoch = Value("i", 0)
|
|
current_step = Value("i", 0)
|
|
ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None
|
|
collator = train_util.collator_class(current_epoch, current_step, ds_for_collator)
|
|
|
|
|
|
if use_template:
|
|
accelerator.print(f"use template for training captions. is object: {args.use_object_template}")
|
|
templates = imagenet_templates_small if args.use_object_template else imagenet_style_templates_small
|
|
replace_to = " ".join(token_strings)
|
|
captions = []
|
|
for tmpl in templates:
|
|
captions.append(tmpl.format(replace_to))
|
|
train_dataset_group.add_replacement("", captions)
|
|
|
|
|
|
if args.num_vectors_per_token > 1:
|
|
prompt_replacement = (args.token_string, replace_to)
|
|
else:
|
|
prompt_replacement = None
|
|
else:
|
|
|
|
if args.num_vectors_per_token > 1:
|
|
replace_to = " ".join(token_strings)
|
|
train_dataset_group.add_replacement(args.token_string, replace_to)
|
|
prompt_replacement = (args.token_string, replace_to)
|
|
else:
|
|
prompt_replacement = None
|
|
|
|
if args.debug_dataset:
|
|
train_util.debug_dataset(train_dataset_group, show_input_ids=True)
|
|
return
|
|
if len(train_dataset_group) == 0:
|
|
accelerator.print("No data found. Please verify arguments / 画像がありません。引数指定を確認してください")
|
|
return
|
|
|
|
if cache_latents:
|
|
assert (
|
|
train_dataset_group.is_latent_cacheable()
|
|
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"
|
|
|
|
|
|
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers, args.sdpa)
|
|
if torch.__version__ >= "2.0.0":
|
|
vae.set_use_memory_efficient_attention_xformers(args.xformers)
|
|
|
|
|
|
if cache_latents:
|
|
vae.to(accelerator.device, dtype=vae_dtype)
|
|
vae.requires_grad_(False)
|
|
vae.eval()
|
|
with torch.no_grad():
|
|
train_dataset_group.cache_latents(vae, args.vae_batch_size, args.cache_latents_to_disk, accelerator.is_main_process)
|
|
vae.to("cpu")
|
|
if torch.cuda.is_available():
|
|
torch.cuda.empty_cache()
|
|
gc.collect()
|
|
|
|
accelerator.wait_for_everyone()
|
|
|
|
if args.gradient_checkpointing:
|
|
unet.enable_gradient_checkpointing()
|
|
for text_encoder in text_encoders:
|
|
text_encoder.gradient_checkpointing_enable()
|
|
|
|
|
|
accelerator.print("prepare optimizer, data loader etc.")
|
|
trainable_params = []
|
|
for text_encoder in text_encoders:
|
|
trainable_params += text_encoder.get_input_embeddings().parameters()
|
|
_, _, optimizer = train_util.get_optimizer(args, trainable_params)
|
|
|
|
|
|
|
|
n_workers = min(args.max_data_loader_n_workers, os.cpu_count() - 1)
|
|
train_dataloader = torch.utils.data.DataLoader(
|
|
train_dataset_group,
|
|
batch_size=1,
|
|
shuffle=True,
|
|
collate_fn=collator,
|
|
num_workers=n_workers,
|
|
persistent_workers=args.persistent_data_loader_workers,
|
|
)
|
|
|
|
|
|
if args.max_train_epochs is not None:
|
|
args.max_train_steps = args.max_train_epochs * math.ceil(
|
|
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
|
|
)
|
|
accelerator.print(
|
|
f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}"
|
|
)
|
|
|
|
|
|
train_dataset_group.set_max_train_steps(args.max_train_steps)
|
|
|
|
|
|
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
|
|
|
|
|
|
if len(text_encoders) == 1:
|
|
text_encoder_or_list, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
|
text_encoder_or_list, optimizer, train_dataloader, lr_scheduler
|
|
)
|
|
|
|
text_encoder_or_list, unet = train_util.transform_if_model_is_DDP(text_encoder_or_list, unet)
|
|
|
|
elif len(text_encoders) == 2:
|
|
text_encoder1, text_encoder2, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
|
text_encoders[0], text_encoders[1], optimizer, train_dataloader, lr_scheduler
|
|
)
|
|
|
|
text_encoder1, text_encoder2, unet = train_util.transform_if_model_is_DDP(text_encoder1, text_encoder2, unet)
|
|
|
|
text_encoder_or_list = text_encoders = [text_encoder1, text_encoder2]
|
|
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
index_no_updates_list = []
|
|
orig_embeds_params_list = []
|
|
for tokenizer, token_ids, text_encoder in zip(tokenizers, token_ids_list, text_encoders):
|
|
index_no_updates = torch.arange(len(tokenizer)) < token_ids[0]
|
|
index_no_updates_list.append(index_no_updates)
|
|
|
|
|
|
orig_embeds_params = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight.data.detach().clone()
|
|
orig_embeds_params_list.append(orig_embeds_params)
|
|
|
|
|
|
text_encoder.requires_grad_(True)
|
|
text_encoder.text_model.encoder.requires_grad_(False)
|
|
text_encoder.text_model.final_layer_norm.requires_grad_(False)
|
|
text_encoder.text_model.embeddings.position_embedding.requires_grad_(False)
|
|
|
|
|
|
unet.requires_grad_(False)
|
|
unet.to(accelerator.device, dtype=weight_dtype)
|
|
if args.gradient_checkpointing:
|
|
|
|
unet.train()
|
|
else:
|
|
unet.eval()
|
|
|
|
if not cache_latents:
|
|
vae.requires_grad_(False)
|
|
vae.eval()
|
|
vae.to(accelerator.device, dtype=vae_dtype)
|
|
|
|
|
|
if args.full_fp16:
|
|
train_util.patch_accelerator_for_fp16_training(accelerator)
|
|
for text_encoder in text_encoders:
|
|
text_encoder.to(weight_dtype)
|
|
if args.full_bf16:
|
|
for text_encoder in text_encoders:
|
|
text_encoder.to(weight_dtype)
|
|
|
|
|
|
train_util.resume_from_local_or_hf_if_specified(accelerator, args)
|
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
|
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
|
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
|
|
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
|
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
|
accelerator.print("running training / 学習開始")
|
|
accelerator.print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}")
|
|
accelerator.print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}")
|
|
accelerator.print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
|
|
accelerator.print(f" num epochs / epoch数: {num_train_epochs}")
|
|
accelerator.print(f" batch size per device / バッチサイズ: {args.train_batch_size}")
|
|
accelerator.print(
|
|
f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}"
|
|
)
|
|
accelerator.print(f" gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
|
|
accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
|
|
|
|
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
|
|
global_step = 0
|
|
|
|
noise_scheduler = DDPMScheduler(
|
|
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False
|
|
)
|
|
prepare_scheduler_for_custom_training(noise_scheduler, accelerator.device)
|
|
if args.zero_terminal_snr:
|
|
custom_train_functions.fix_noise_scheduler_betas_for_zero_terminal_snr(noise_scheduler)
|
|
|
|
if accelerator.is_main_process:
|
|
init_kwargs = {}
|
|
if args.log_tracker_config is not None:
|
|
init_kwargs = toml.load(args.log_tracker_config)
|
|
accelerator.init_trackers(
|
|
"textual_inversion" if args.log_tracker_name is None else args.log_tracker_name, init_kwargs=init_kwargs
|
|
)
|
|
|
|
|
|
def save_model(ckpt_name, embs_list, steps, epoch_no, force_sync_upload=False):
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
ckpt_file = os.path.join(args.output_dir, ckpt_name)
|
|
|
|
accelerator.print(f"\nsaving checkpoint: {ckpt_file}")
|
|
|
|
sai_metadata = train_util.get_sai_model_spec(None, args, self.is_sdxl, False, True)
|
|
|
|
self.save_weights(ckpt_file, embs_list, save_dtype, sai_metadata)
|
|
if args.huggingface_repo_id is not None:
|
|
huggingface_util.upload(args, ckpt_file, "/" + ckpt_name, force_sync_upload=force_sync_upload)
|
|
|
|
def remove_model(old_ckpt_name):
|
|
old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name)
|
|
if os.path.exists(old_ckpt_file):
|
|
accelerator.print(f"removing old checkpoint: {old_ckpt_file}")
|
|
os.remove(old_ckpt_file)
|
|
|
|
|
|
for epoch in range(num_train_epochs):
|
|
accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}")
|
|
current_epoch.value = epoch + 1
|
|
|
|
for text_encoder in text_encoders:
|
|
text_encoder.train()
|
|
|
|
loss_total = 0
|
|
|
|
for step, batch in enumerate(train_dataloader):
|
|
current_step.value = global_step
|
|
with accelerator.accumulate(text_encoders[0]):
|
|
with torch.no_grad():
|
|
if "latents" in batch and batch["latents"] is not None:
|
|
latents = batch["latents"].to(accelerator.device)
|
|
else:
|
|
|
|
latents = vae.encode(batch["images"].to(dtype=vae_dtype)).latent_dist.sample()
|
|
latents = latents * self.vae_scale_factor
|
|
|
|
|
|
text_encoder_conds = self.get_text_cond(args, accelerator, batch, tokenizers, text_encoders, weight_dtype)
|
|
|
|
|
|
|
|
noise, noisy_latents, timesteps = train_util.get_noise_noisy_latents_and_timesteps(
|
|
args, noise_scheduler, latents
|
|
)
|
|
|
|
|
|
with accelerator.autocast():
|
|
noise_pred = self.call_unet(
|
|
args, accelerator, unet, noisy_latents, timesteps, text_encoder_conds, batch, weight_dtype
|
|
)
|
|
|
|
if args.v_parameterization:
|
|
|
|
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
|
else:
|
|
target = noise
|
|
|
|
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
|
|
loss = loss.mean([1, 2, 3])
|
|
|
|
loss_weights = batch["loss_weights"]
|
|
loss = loss * loss_weights
|
|
|
|
if args.min_snr_gamma:
|
|
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma)
|
|
if args.scale_v_pred_loss_like_noise_pred:
|
|
loss = scale_v_prediction_loss_like_noise_prediction(loss, timesteps, noise_scheduler)
|
|
if args.v_pred_like_loss:
|
|
loss = add_v_prediction_like_loss(loss, timesteps, noise_scheduler, args.v_pred_like_loss)
|
|
if args.debiased_estimation_loss:
|
|
loss = apply_debiased_estimation(loss, timesteps, noise_scheduler)
|
|
|
|
loss = loss.mean()
|
|
|
|
accelerator.backward(loss)
|
|
if accelerator.sync_gradients and args.max_grad_norm != 0.0:
|
|
params_to_clip = text_encoder.get_input_embeddings().parameters()
|
|
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
|
|
|
|
optimizer.step()
|
|
lr_scheduler.step()
|
|
optimizer.zero_grad(set_to_none=True)
|
|
|
|
|
|
with torch.no_grad():
|
|
for text_encoder, orig_embeds_params, index_no_updates in zip(
|
|
text_encoders, orig_embeds_params_list, index_no_updates_list
|
|
):
|
|
accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[
|
|
index_no_updates
|
|
] = orig_embeds_params[index_no_updates]
|
|
|
|
|
|
if accelerator.sync_gradients:
|
|
progress_bar.update(1)
|
|
global_step += 1
|
|
|
|
self.sample_images(
|
|
accelerator,
|
|
args,
|
|
None,
|
|
global_step,
|
|
accelerator.device,
|
|
vae,
|
|
tokenizer_or_list,
|
|
text_encoder_or_list,
|
|
unet,
|
|
prompt_replacement,
|
|
)
|
|
|
|
|
|
if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0:
|
|
accelerator.wait_for_everyone()
|
|
if accelerator.is_main_process:
|
|
updated_embs_list = []
|
|
for text_encoder, token_ids in zip(text_encoders, token_ids_list):
|
|
updated_embs = (
|
|
accelerator.unwrap_model(text_encoder)
|
|
.get_input_embeddings()
|
|
.weight[token_ids]
|
|
.data.detach()
|
|
.clone()
|
|
)
|
|
updated_embs_list.append(updated_embs)
|
|
|
|
ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, global_step)
|
|
save_model(ckpt_name, updated_embs_list, global_step, epoch)
|
|
|
|
if args.save_state:
|
|
train_util.save_and_remove_state_stepwise(args, accelerator, global_step)
|
|
|
|
remove_step_no = train_util.get_remove_step_no(args, global_step)
|
|
if remove_step_no is not None:
|
|
remove_ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, remove_step_no)
|
|
remove_model(remove_ckpt_name)
|
|
|
|
current_loss = loss.detach().item()
|
|
if args.logging_dir is not None:
|
|
logs = {"loss": current_loss, "lr": float(lr_scheduler.get_last_lr()[0])}
|
|
if (
|
|
args.optimizer_type.lower().startswith("DAdapt".lower()) or args.optimizer_type.lower() == "Prodigy".lower()
|
|
):
|
|
logs["lr/d*lr"] = (
|
|
lr_scheduler.optimizers[0].param_groups[0]["d"] * lr_scheduler.optimizers[0].param_groups[0]["lr"]
|
|
)
|
|
accelerator.log(logs, step=global_step)
|
|
|
|
loss_total += current_loss
|
|
avr_loss = loss_total / (step + 1)
|
|
logs = {"loss": avr_loss}
|
|
progress_bar.set_postfix(**logs)
|
|
|
|
if global_step >= args.max_train_steps:
|
|
break
|
|
|
|
if args.logging_dir is not None:
|
|
logs = {"loss/epoch": loss_total / len(train_dataloader)}
|
|
accelerator.log(logs, step=epoch + 1)
|
|
|
|
accelerator.wait_for_everyone()
|
|
|
|
updated_embs_list = []
|
|
for text_encoder, token_ids in zip(text_encoders, token_ids_list):
|
|
updated_embs = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[token_ids].data.detach().clone()
|
|
updated_embs_list.append(updated_embs)
|
|
|
|
if args.save_every_n_epochs is not None:
|
|
saving = (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs
|
|
if accelerator.is_main_process and saving:
|
|
ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, epoch + 1)
|
|
save_model(ckpt_name, updated_embs_list, epoch + 1, global_step)
|
|
|
|
remove_epoch_no = train_util.get_remove_epoch_no(args, epoch + 1)
|
|
if remove_epoch_no is not None:
|
|
remove_ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, remove_epoch_no)
|
|
remove_model(remove_ckpt_name)
|
|
|
|
if args.save_state:
|
|
train_util.save_and_remove_state_on_epoch_end(args, accelerator, epoch + 1)
|
|
|
|
self.sample_images(
|
|
accelerator,
|
|
args,
|
|
epoch + 1,
|
|
global_step,
|
|
accelerator.device,
|
|
vae,
|
|
tokenizer_or_list,
|
|
text_encoder_or_list,
|
|
unet,
|
|
prompt_replacement,
|
|
)
|
|
|
|
|
|
|
|
is_main_process = accelerator.is_main_process
|
|
if is_main_process:
|
|
text_encoder = accelerator.unwrap_model(text_encoder)
|
|
|
|
accelerator.end_training()
|
|
|
|
if args.save_state and is_main_process:
|
|
train_util.save_state_on_train_end(args, accelerator)
|
|
|
|
updated_embs = text_encoder.get_input_embeddings().weight[token_ids].data.detach().clone()
|
|
|
|
if is_main_process:
|
|
ckpt_name = train_util.get_last_ckpt_name(args, "." + args.save_model_as)
|
|
save_model(ckpt_name, updated_embs_list, global_step, num_train_epochs, force_sync_upload=True)
|
|
|
|
print("model saved.")
|
|
|
|
|
|
def setup_parser() -> argparse.ArgumentParser:
|
|
parser = argparse.ArgumentParser()
|
|
|
|
train_util.add_sd_models_arguments(parser)
|
|
train_util.add_dataset_arguments(parser, True, True, False)
|
|
train_util.add_training_arguments(parser, True)
|
|
train_util.add_optimizer_arguments(parser)
|
|
config_util.add_config_arguments(parser)
|
|
custom_train_functions.add_custom_train_arguments(parser, False)
|
|
|
|
parser.add_argument(
|
|
"--save_model_as",
|
|
type=str,
|
|
default="pt",
|
|
choices=[None, "ckpt", "pt", "safetensors"],
|
|
help="format to save the model (default is .pt) / モデル保存時の形式(デフォルトはpt)",
|
|
)
|
|
|
|
parser.add_argument("--weights", type=str, default=None, help="embedding weights to initialize / 学習するネットワークの初期重み")
|
|
parser.add_argument(
|
|
"--num_vectors_per_token", type=int, default=1, help="number of vectors per token / トークンに割り当てるembeddingsの要素数"
|
|
)
|
|
parser.add_argument(
|
|
"--token_string",
|
|
type=str,
|
|
default=None,
|
|
help="token string used in training, must not exist in tokenizer / 学習時に使用されるトークン文字列、tokenizerに存在しない文字であること",
|
|
)
|
|
parser.add_argument("--init_word", type=str, default=None, help="words to initialize vector / ベクトルを初期化に使用する単語、複数可")
|
|
parser.add_argument(
|
|
"--use_object_template",
|
|
action="store_true",
|
|
help="ignore caption and use default templates for object / キャプションは使わずデフォルトの物体用テンプレートで学習する",
|
|
)
|
|
parser.add_argument(
|
|
"--use_style_template",
|
|
action="store_true",
|
|
help="ignore caption and use default templates for stype / キャプションは使わずデフォルトのスタイル用テンプレートで学習する",
|
|
)
|
|
parser.add_argument(
|
|
"--no_half_vae",
|
|
action="store_true",
|
|
help="do not use fp16/bf16 VAE in mixed precision (use float VAE) / mixed precisionでも fp16/bf16 VAEを使わずfloat VAEを使う",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = setup_parser()
|
|
|
|
args = parser.parse_args()
|
|
args = train_util.read_config_from_file(args, parser)
|
|
|
|
trainer = TextualInversionTrainer()
|
|
trainer.train(args)
|
|
|