import os,io from PIL import Image, ImageOps import numpy as np import torch import folder_paths import base64 from io import BytesIO # Tensor to PIL def tensor2pil(image): return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)) def base64_save(base64_data): # base64_data = "..." data = base64_data.split(",")[1] decoded_data = base64.b64decode(data) # 保存图像为本地文件 image = Image.open(BytesIO(decoded_data)) # image.save(fp) image,mask=load_image(image) return (image,mask) # # 把白色部分处理成黑色 # def convert_to_bw(image): # # 读取图片 # # image = Image.open(image_path) # # 获取图片的宽度和高度 # width, height = image.size # # 遍历图片的每个像素点 # for x in range(width): # for y in range(height): # # 获取当前像素点的RGB值 # r, g, b = image.getpixel((x, y)) # # 判断当前像素点是否为白色 # if r == 255 and g == 255 and b == 255: # # 将白色部分处理成黑色 # image.putpixel((x, y), (0, 0, 0)) # else: # # 将非白色部分处理成白色 # image.putpixel((x, y), (255, 255, 255)) # # 转换为黑白图 # mask = image.convert("L") # # # 保存处理后的图片 # # image.save("black_white_image.jpg") # # print("图片处理完成!") # return mask def load_image(i,white_bg=False): # i = Image.open(fp) image = i.convert("RGB") image = np.array(image).astype(np.float32) / 255.0 image = torch.from_numpy(image)[None,] if 'A' in i.getbands(): mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0 mask = 1. - torch.from_numpy(mask) if white_bg==True: nw = mask.unsqueeze(0).unsqueeze(-1).repeat(1, 1, 1, 3) # 将mask的黑色部分对image进行白色处理 image[nw == 1] = 1.0 else: mask = torch.zeros((64,64), dtype=torch.float32, device="cpu") return (image,mask) class ScreenShareNode: @classmethod def INPUT_TYPES(s): return { "required":{ "image_base64": ("CHEESE",), "refresh_rate": ("INT", {"default": 500, "min": 0,"step": 50, "max": 0xffffffffffffffff}), }, "optional":{ "prompt": ("PROMPT",), "slide": ("SLIDE",), "seed": ("SEED",), # "seed": ("INT", {"default": 1, "min": 0, "max": 0xffffffffffffffff}), } } RETURN_TYPES = ('IMAGE','STRING','FLOAT',"INT") RETURN_NAMES = ("current frame (image)","prompt","denoise (float)","seed (int)") FUNCTION = "run" CATEGORY = "♾️Mixlab/Screen" # INPUT_IS_LIST = True OUTPUT_IS_LIST = (False,False,False,False) # 运行的函数 def run(self,image_base64,refresh_rate ,prompt,slide,seed): im,mask=base64_save(image_base64) # print('##########prompt',prompt) return {"ui":{"refresh_rate": [refresh_rate]},"result": (im,prompt,slide,seed,)} class FloatingVideo: @classmethod def INPUT_TYPES(s): return { "required":{ "image": ("IMAGE",) }, } # RETURN_TYPES = ('IMAGE','MASK') RETURN_TYPES = () OUTPUT_NODE = True FUNCTION = "run" CATEGORY = "♾️Mixlab/Screen" # INPUT_IS_LIST = True # OUTPUT_IS_LIST = (False,False,) # 运行的函数 def run(self,image): results = list() for im in image: im=tensor2pil(im) # image_base64 = base64.b64encode(image.tobytes()) buffered = BytesIO() im.save(buffered, format="JPEG") image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8") results.append(image_base64) return { "ui": { "images_": results } } # class SildeNode: # CATEGORY = "quicknodes" # @classmethod # def INPUT_TYPES(s): # return { "required":{} } # RETURN_TYPES = () # RETURN_NAMES = () # FUNCTION = "func" # def func(self): # return ()