from torch import Tensor import torch from .utils import TimestepKeyframe, TimestepKeyframeGroup, ControlWeights, get_properly_arranged_t2i_weights, linear_conversion from .logger import logger WEIGHTS_RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT") class DefaultWeights: @classmethod def INPUT_TYPES(s): return { "optional": { "cn_extras": ("CN_WEIGHTS_EXTRAS",), } } RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",) RETURN_NAMES = WEIGHTS_RETURN_NAMES FUNCTION = "load_weights" CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/weights" def load_weights(self, cn_extras: dict[str]={}): weights = ControlWeights.default(extras=cn_extras) return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights))) class ScaledSoftMaskedUniversalWeights: @classmethod def INPUT_TYPES(s): return { "required": { "mask": ("MASK", ), "min_base_multiplier": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}, ), "max_base_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}, ), #"lock_min": ("BOOLEAN", {"default": False}, ), #"lock_max": ("BOOLEAN", {"default": False}, ), }, "optional": { "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ), "cn_extras": ("CN_WEIGHTS_EXTRAS",), } } RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",) RETURN_NAMES = WEIGHTS_RETURN_NAMES FUNCTION = "load_weights" CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/weights" def load_weights(self, mask: Tensor, min_base_multiplier: float, max_base_multiplier: float, lock_min=False, lock_max=False, uncond_multiplier: float=1.0, cn_extras: dict[str]={}): # normalize mask mask = mask.clone() x_min = 0.0 if lock_min else mask.min() x_max = 1.0 if lock_max else mask.max() if x_min == x_max: mask = torch.ones_like(mask) * max_base_multiplier else: mask = linear_conversion(mask, x_min, x_max, min_base_multiplier, max_base_multiplier) weights = ControlWeights.universal_mask(weight_mask=mask, uncond_multiplier=uncond_multiplier, extras=cn_extras) return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights))) class ScaledSoftUniversalWeights: @classmethod def INPUT_TYPES(s): return { "required": { "base_multiplier": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 1.0, "step": 0.001}, ), "flip_weights": ("BOOLEAN", {"default": False}), }, "optional": { "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ), "cn_extras": ("CN_WEIGHTS_EXTRAS",), } } RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",) RETURN_NAMES = WEIGHTS_RETURN_NAMES FUNCTION = "load_weights" CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/weights" def load_weights(self, base_multiplier, flip_weights, uncond_multiplier: float=1.0, cn_extras: dict[str]={}): weights = ControlWeights.universal(base_multiplier=base_multiplier, flip_weights=flip_weights, uncond_multiplier=uncond_multiplier, extras=cn_extras) return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights))) class SoftControlNetWeights: @classmethod def INPUT_TYPES(s): return { "required": { "weight_00": ("FLOAT", {"default": 0.09941396206337118, "min": 0.0, "max": 10.0, "step": 0.001}, ), "weight_01": ("FLOAT", {"default": 0.12050177219802567, "min": 0.0, "max": 10.0, "step": 0.001}, ), "weight_02": ("FLOAT", {"default": 0.14606275417942507, "min": 0.0, "max": 10.0, "step": 0.001}, ), "weight_03": ("FLOAT", {"default": 0.17704576264172736, "min": 0.0, "max": 10.0, "step": 0.001}, ), "weight_04": ("FLOAT", {"default": 0.214600924414215, "min": 0.0, "max": 10.0, "step": 0.001}, ), "weight_05": ("FLOAT", {"default": 0.26012233262329093, "min": 0.0, "max": 10.0, "step": 0.001}, ), "weight_06": ("FLOAT", {"default": 0.3152997971191405, "min": 0.0, "max": 10.0, "step": 0.001}, ), "weight_07": ("FLOAT", {"default": 0.3821815722656249, "min": 0.0, "max": 10.0, "step": 0.001}, ), "weight_08": ("FLOAT", {"default": 0.4632503906249999, "min": 0.0, "max": 10.0, "step": 0.001}, ), "weight_09": ("FLOAT", {"default": 0.561515625, "min": 0.0, "max": 10.0, "step": 0.001}, ), "weight_10": ("FLOAT", {"default": 0.6806249999999999, "min": 0.0, "max": 10.0, "step": 0.001}, ), "weight_11": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 10.0, "step": 0.001}, ), "weight_12": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), "flip_weights": ("BOOLEAN", {"default": False}), }, "optional": { "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ), "cn_extras": ("CN_WEIGHTS_EXTRAS",), } } RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",) RETURN_NAMES = WEIGHTS_RETURN_NAMES FUNCTION = "load_weights" CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/weights/ControlNet" def load_weights(self, weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06, weight_07, weight_08, weight_09, weight_10, weight_11, weight_12, flip_weights, uncond_multiplier: float=1.0, cn_extras: dict[str]={}): weights = [weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06, weight_07, weight_08, weight_09, weight_10, weight_11, weight_12] weights = ControlWeights.controlnet(weights, flip_weights=flip_weights, uncond_multiplier=uncond_multiplier, extras=cn_extras) return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights))) class CustomControlNetWeights: @classmethod def INPUT_TYPES(s): return { "required": { "weight_00": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), "weight_01": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), "weight_02": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), "weight_03": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), "weight_04": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), "weight_05": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), "weight_06": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), "weight_07": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), "weight_08": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), "weight_09": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), "weight_10": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), "weight_11": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), "weight_12": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), "flip_weights": ("BOOLEAN", {"default": False}), }, "optional": { "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ), "cn_extras": ("CN_WEIGHTS_EXTRAS",), } } RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",) RETURN_NAMES = WEIGHTS_RETURN_NAMES FUNCTION = "load_weights" CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/weights/ControlNet" def load_weights(self, weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06, weight_07, weight_08, weight_09, weight_10, weight_11, weight_12, flip_weights, uncond_multiplier: float=1.0, cn_extras: dict[str]={}): weights = [weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06, weight_07, weight_08, weight_09, weight_10, weight_11, weight_12] weights = ControlWeights.controlnet(weights, flip_weights=flip_weights, uncond_multiplier=uncond_multiplier, extras=cn_extras) return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights))) class SoftT2IAdapterWeights: @classmethod def INPUT_TYPES(s): return { "required": { "weight_00": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 10.0, "step": 0.001}, ), "weight_01": ("FLOAT", {"default": 0.62, "min": 0.0, "max": 10.0, "step": 0.001}, ), "weight_02": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 10.0, "step": 0.001}, ), "weight_03": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), "flip_weights": ("BOOLEAN", {"default": False}), }, "optional": { "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ), "cn_extras": ("CN_WEIGHTS_EXTRAS",), } } RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",) RETURN_NAMES = WEIGHTS_RETURN_NAMES FUNCTION = "load_weights" CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/weights/T2IAdapter" def load_weights(self, weight_00, weight_01, weight_02, weight_03, flip_weights, uncond_multiplier: float=1.0, cn_extras: dict[str]={}): weights = [weight_00, weight_01, weight_02, weight_03] weights = get_properly_arranged_t2i_weights(weights) weights = ControlWeights.t2iadapter(weights, flip_weights=flip_weights, uncond_multiplier=uncond_multiplier, extras=cn_extras) return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights))) class CustomT2IAdapterWeights: @classmethod def INPUT_TYPES(s): return { "required": { "weight_00": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), "weight_01": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), "weight_02": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), "weight_03": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), "flip_weights": ("BOOLEAN", {"default": False}), }, "optional": { "uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ), "cn_extras": ("CN_WEIGHTS_EXTRAS",), } } RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",) RETURN_NAMES = WEIGHTS_RETURN_NAMES FUNCTION = "load_weights" CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/weights/T2IAdapter" def load_weights(self, weight_00, weight_01, weight_02, weight_03, flip_weights, uncond_multiplier: float=1.0, cn_extras: dict[str]={}): weights = [weight_00, weight_01, weight_02, weight_03] weights = get_properly_arranged_t2i_weights(weights) weights = ControlWeights.t2iadapter(weights, flip_weights=flip_weights, uncond_multiplier=uncond_multiplier, extras=cn_extras) return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))