import latent_preview import comfy import einops import torch def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False): device = comfy.model_management.get_torch_device() latent_image = latent["samples"] if disable_noise: noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu") else: batch_inds = latent["batch_index"] if "batch_index" in latent else None noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds) noise_mask = None if "noise_mask" in latent: noise_mask = latent["noise_mask"] preview_format = "JPEG" if preview_format not in ["JPEG", "PNG"]: preview_format = "JPEG" previewer = latent_preview.get_previewer(device, model.model.latent_format) pbar = comfy.utils.ProgressBar(steps) def callback(step, x0, x, total_steps): preview_bytes = None if previewer: preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0) pbar.update_absolute(step + 1, total_steps, preview_bytes) samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, seed=seed) out = latent.copy() out["samples"] = samples return (out, ) class Gradually_More_Denoise_KSampler: @classmethod def INPUT_TYPES(s): return {"required": {"model": ("MODEL",), "positive": ("CONDITIONING", ), "negative": ("CONDITIONING", ), "latent_image": ("LATENT", ), "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "steps": ("INT", {"default": 20, "min": 1, "max": 10000}), "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}), "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ), "start_denoise": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}), "denoise_increment": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 1.0, "step": 0.1}), "denoise_increment_steps": ("INT", {"default": 20, "min": 1, "max": 10000}) }, "optional": { "optional_vae": ("VAE",) } } RETURN_TYPES = ("MODEL", "CONDITIONING", "CONDITIONING", "LATENT", "VAE", ) RETURN_NAMES = ("MODEL", "CONDITIONING+", "CONDITIONING-", "LATENT", "VAE", ) OUTPUT_NODE = True FUNCTION = "sample" CATEGORY = "ComfyUI-Frame-Interpolation/others" def sample(self, model, positive, negative, latent_image, optional_vae, seed, steps, cfg, sampler_name, scheduler,start_denoise, denoise_increment, denoise_increment_steps): if start_denoise + denoise_increment * denoise_increment_steps > 1.0: raise Exception(f"Max denoise strength can't over 1.0 (start_denoise={start_denoise}, denoise_increment={denoise_increment}, denoise_increment_steps={denoise_increment_steps}") copied_latent = latent_image.copy() out_samples = [] for latent_sample in copied_latent["samples"]: latent = {"samples": einops.rearrange(latent_sample, "c h w -> 1 c h w")} #Latent's shape is NCHW gradually_denoising_samples = [ common_ksampler( model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=start_denoise + denoise_increment * i )[0]["samples"] for i in range(denoise_increment_steps) ] out_samples.extend(gradually_denoising_samples) copied_latent["samples"] = torch.cat(out_samples, dim=0) return (model, positive, negative, copied_latent, optional_vae)