import torch from nodes import MAX_RESOLUTION, ConditioningZeroOut, ConditioningSetTimestepRange, ConditioningCombine class CLIPTextEncodeSDXLSimplified: @classmethod def INPUT_TYPES(s): return {"required": { "width": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}), "height": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}), "size_cond_factor": ("INT", {"default": 4, "min": 1, "max": 16 }), "text": ("STRING", {"multiline": True, "dynamicPrompts": True, "default": ""}), "clip": ("CLIP", ), }} RETURN_TYPES = ("CONDITIONING",) FUNCTION = "execute" CATEGORY = "essentials/conditioning" def execute(self, clip, width, height, size_cond_factor, text): crop_w = 0 crop_h = 0 width = width*size_cond_factor height = height*size_cond_factor target_width = width target_height = height text_g = text_l = text tokens = clip.tokenize(text_g) tokens["l"] = clip.tokenize(text_l)["l"] if len(tokens["l"]) != len(tokens["g"]): empty = clip.tokenize("") while len(tokens["l"]) < len(tokens["g"]): tokens["l"] += empty["l"] while len(tokens["l"]) > len(tokens["g"]): tokens["g"] += empty["g"] cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True) return ([[cond, {"pooled_output": pooled, "width": width, "height": height, "crop_w": crop_w, "crop_h": crop_h, "target_width": target_width, "target_height": target_height}]], ) class ConditioningCombineMultiple: @classmethod def INPUT_TYPES(s): return { "required": { "conditioning_1": ("CONDITIONING",), "conditioning_2": ("CONDITIONING",), }, "optional": { "conditioning_3": ("CONDITIONING",), "conditioning_4": ("CONDITIONING",), "conditioning_5": ("CONDITIONING",), }, } RETURN_TYPES = ("CONDITIONING",) FUNCTION = "execute" CATEGORY = "essentials/conditioning" def execute(self, conditioning_1, conditioning_2, conditioning_3=None, conditioning_4=None, conditioning_5=None): c = conditioning_1 + conditioning_2 if conditioning_3 is not None: c += conditioning_3 if conditioning_4 is not None: c += conditioning_4 if conditioning_5 is not None: c += conditioning_5 return (c,) class SD3NegativeConditioning: @classmethod def INPUT_TYPES(s): return {"required": { "conditioning": ("CONDITIONING",), "end": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 1.0, "step": 0.001 }), }} RETURN_TYPES = ("CONDITIONING",) FUNCTION = "execute" CATEGORY = "essentials/conditioning" def execute(self, conditioning, end): zero_c = ConditioningZeroOut().zero_out(conditioning)[0] if end == 0: return (zero_c, ) c = ConditioningSetTimestepRange().set_range(conditioning, 0, end)[0] zero_c = ConditioningSetTimestepRange().set_range(zero_c, end, 1.0)[0] c = ConditioningCombine().combine(zero_c, c)[0] return (c, ) COND_CLASS_MAPPINGS = { "CLIPTextEncodeSDXL+": CLIPTextEncodeSDXLSimplified, "ConditioningCombineMultiple+": ConditioningCombineMultiple, "SD3NegativeConditioning+": SD3NegativeConditioning, } COND_NAME_MAPPINGS = { "CLIPTextEncodeSDXL+": "🔧 SDXL CLIPTextEncode", "ConditioningCombineMultiple+": "🔧 Cond Combine Multiple", "SD3NegativeConditioning+": "🔧 SD3 Negative Conditioning" }