import math import torch from .utils import AnyType import comfy.model_management any = AnyType("*") class SimpleMath: @classmethod def INPUT_TYPES(s): return { "optional": { "a": ("INT,FLOAT", { "default": 0.0, "step": 0.1 }), "b": ("INT,FLOAT", { "default": 0.0, "step": 0.1 }), }, "required": { "value": ("STRING", { "multiline": False, "default": "" }), }, } RETURN_TYPES = ("INT", "FLOAT", ) FUNCTION = "execute" CATEGORY = "essentials/utilities" def execute(self, value, a = 0.0, b = 0.0): import ast import operator as op operators = { ast.Add: op.add, ast.Sub: op.sub, ast.Mult: op.mul, ast.Div: op.truediv, ast.FloorDiv: op.floordiv, ast.Pow: op.pow, ast.BitXor: op.xor, ast.USub: op.neg, ast.Mod: op.mod, } op_functions = { 'min': min, 'max': max, 'round': round, 'sum': sum, 'len': len, } def eval_(node): if isinstance(node, ast.Num): # number return node.n elif isinstance(node, ast.Name): # variable if node.id == "a": return a if node.id == "b": return b elif isinstance(node, ast.BinOp): # return operators[type(node.op)](eval_(node.left), eval_(node.right)) elif isinstance(node, ast.UnaryOp): # e.g., -1 return operators[type(node.op)](eval_(node.operand)) elif isinstance(node, ast.Call): # custom function if node.func.id in op_functions: args =[eval_(arg) for arg in node.args] return op_functions[node.func.id](*args) elif isinstance(node, ast.Subscript): # indexing or slicing value = eval_(node.value) if isinstance(node.slice, ast.Constant): return value[node.slice.value] else: return 0 else: return 0 result = eval_(ast.parse(value, mode='eval').body) if math.isnan(result): result = 0.0 return (round(result), result, ) class ConsoleDebug: @classmethod def INPUT_TYPES(s): return { "required": { "value": (any, {}), }, "optional": { "prefix": ("STRING", { "multiline": False, "default": "Value:" }) } } RETURN_TYPES = () FUNCTION = "execute" CATEGORY = "essentials/utilities" OUTPUT_NODE = True def execute(self, value, prefix): print(f"\033[96m{prefix} {value}\033[0m") return (None,) class DebugTensorShape: @classmethod def INPUT_TYPES(s): return { "required": { "tensor": (any, {}), }, } RETURN_TYPES = () FUNCTION = "execute" CATEGORY = "essentials/utilities" OUTPUT_NODE = True def execute(self, tensor): shapes = [] def tensorShape(tensor): if isinstance(tensor, dict): for k in tensor: tensorShape(tensor[k]) elif isinstance(tensor, list): for i in range(len(tensor)): tensorShape(tensor[i]) elif hasattr(tensor, 'shape'): shapes.append(list(tensor.shape)) tensorShape(tensor) print(f"\033[96mShapes found: {shapes}\033[0m") return (None,) class BatchCount: @classmethod def INPUT_TYPES(s): return { "required": { "batch": (any, {}), }, } RETURN_TYPES = ("INT",) FUNCTION = "execute" CATEGORY = "essentials/utilities" def execute(self, batch): count = 0 if hasattr(batch, 'shape'): count = batch.shape[0] elif isinstance(batch, dict) and 'samples' in batch: count = batch['samples'].shape[0] elif isinstance(batch, list) or isinstance(batch, dict): count = len(batch) return (count, ) class ModelCompile(): @classmethod def INPUT_TYPES(s): return { "required": { "model": ("MODEL",), "fullgraph": ("BOOLEAN", { "default": False }), "dynamic": ("BOOLEAN", { "default": False }), "mode": (["default", "reduce-overhead", "max-autotune", "max-autotune-no-cudagraphs"],), }, } RETURN_TYPES = ("MODEL", ) FUNCTION = "execute" CATEGORY = "essentials/utilities" def execute(self, model, fullgraph, dynamic, mode): work_model = model.clone() torch._dynamo.config.suppress_errors = True work_model.model.diffusion_model = torch.compile(work_model.model.diffusion_model, dynamic=dynamic, fullgraph=fullgraph, mode=mode) return (work_model, ) class RemoveLatentMask: @classmethod def INPUT_TYPES(s): return {"required": { "samples": ("LATENT",),}} RETURN_TYPES = ("LATENT",) FUNCTION = "execute" CATEGORY = "essentials/utilities" def execute(self, samples): s = samples.copy() if "noise_mask" in s: del s["noise_mask"] return (s,) class SDXLEmptyLatentSizePicker: def __init__(self): self.device = comfy.model_management.intermediate_device() @classmethod def INPUT_TYPES(s): return {"required": { "resolution": (["704x1408 (0.5)","704x1344 (0.52)","768x1344 (0.57)","768x1280 (0.6)","832x1216 (0.68)","832x1152 (0.72)","896x1152 (0.78)","896x1088 (0.82)","960x1088 (0.88)","960x1024 (0.94)","1024x1024 (1.0)","1024x960 (1.07)","1088x960 (1.13)","1088x896 (1.21)","1152x896 (1.29)","1152x832 (1.38)","1216x832 (1.46)","1280x768 (1.67)","1344x768 (1.75)","1344x704 (1.91)","1408x704 (2.0)","1472x704 (2.09)","1536x640 (2.4)","1600x640 (2.5)","1664x576 (2.89)","1728x576 (3.0)",], {"default": "1024x1024 (1.0)"}), "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), }} RETURN_TYPES = ("LATENT","INT","INT",) RETURN_NAMES = ("LATENT","width", "height",) FUNCTION = "execute" CATEGORY = "essentials/utilities" def execute(self, resolution, batch_size): width, height = resolution.split(" ")[0].split("x") width = int(width) height = int(height) latent = torch.zeros([batch_size, 4, height // 8, width // 8], device=self.device) return ({"samples":latent}, width, height,) MISC_CLASS_MAPPINGS = { "BatchCount+": BatchCount, "ConsoleDebug+": ConsoleDebug, "DebugTensorShape+": DebugTensorShape, "ModelCompile+": ModelCompile, "RemoveLatentMask+": RemoveLatentMask, "SDXLEmptyLatentSizePicker+": SDXLEmptyLatentSizePicker, "SimpleMath+": SimpleMath, } MISC_NAME_MAPPINGS = { "BatchCount+": "🔧 Batch Count", "ConsoleDebug+": "🔧 Console Debug", "DebugTensorShape+": "🔧 Debug Tensor Shape", "ModelCompile+": "🔧 Model Compile", "RemoveLatentMask+": "🔧 Remove Latent Mask", "SDXLEmptyLatentSizePicker+": "🔧 SDXL Empty Latent Size Picker", "SimpleMath+": "🔧 Simple Math", }