import os from PIL import Image import numpy as np import torch from torchvision.utils import make_grid import cv2 import math import logging import hashlib from insightface.app.common import Face from safetensors.torch import save_file, safe_open from tqdm import tqdm import urllib.request import onnxruntime from typing import Any import folder_paths ORT_SESSION = None def tensor_to_pil(img_tensor, batch_index=0): # Convert tensor of shape [batch_size, channels, height, width] at the batch_index to PIL Image img_tensor = img_tensor[batch_index].unsqueeze(0) i = 255. * img_tensor.cpu().numpy() img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8).squeeze()) return img def batch_tensor_to_pil(img_tensor): # Convert tensor of shape [batch_size, channels, height, width] to a list of PIL Images return [tensor_to_pil(img_tensor, i) for i in range(img_tensor.shape[0])] def pil_to_tensor(image): # Takes a PIL image and returns a tensor of shape [1, height, width, channels] image = np.array(image).astype(np.float32) / 255.0 image = torch.from_numpy(image).unsqueeze(0) if len(image.shape) == 3: # If the image is grayscale, add a channel dimension image = image.unsqueeze(-1) return image def batched_pil_to_tensor(images): # Takes a list of PIL images and returns a tensor of shape [batch_size, height, width, channels] return torch.cat([pil_to_tensor(image) for image in images], dim=0) def img2tensor(imgs, bgr2rgb=True, float32=True): def _totensor(img, bgr2rgb, float32): if img.shape[2] == 3 and bgr2rgb: if img.dtype == 'float64': img = img.astype('float32') img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = torch.from_numpy(img.transpose(2, 0, 1)) if float32: img = img.float() return img if isinstance(imgs, list): return [_totensor(img, bgr2rgb, float32) for img in imgs] else: return _totensor(imgs, bgr2rgb, float32) def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)): if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))): raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}') if torch.is_tensor(tensor): tensor = [tensor] result = [] for _tensor in tensor: _tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max) _tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0]) n_dim = _tensor.dim() if n_dim == 4: img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy() img_np = img_np.transpose(1, 2, 0) if rgb2bgr: img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) elif n_dim == 3: img_np = _tensor.numpy() img_np = img_np.transpose(1, 2, 0) if img_np.shape[2] == 1: # gray image img_np = np.squeeze(img_np, axis=2) else: if rgb2bgr: img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) elif n_dim == 2: img_np = _tensor.numpy() else: raise TypeError('Only support 4D, 3D or 2D tensor. ' f'But received with dimension: {n_dim}') if out_type == np.uint8: # Unlike MATLAB, numpy.unit8() WILL NOT round by default. img_np = (img_np * 255.0).round() img_np = img_np.astype(out_type) result.append(img_np) if len(result) == 1: result = result[0] return result def rgba2rgb_tensor(rgba): r = rgba[...,0] g = rgba[...,1] b = rgba[...,2] return torch.stack([r, g, b], dim=3) def download(url, path, name): request = urllib.request.urlopen(url) total = int(request.headers.get('Content-Length', 0)) with tqdm(total=total, desc=f'[ReActor] Downloading {name} to {path}', unit='B', unit_scale=True, unit_divisor=1024) as progress: urllib.request.urlretrieve(url, path, reporthook=lambda count, block_size, total_size: progress.update(block_size)) def move_path(old_path, new_path): if os.path.exists(old_path): try: models = os.listdir(old_path) for model in models: move_old_path = os.path.join(old_path, model) move_new_path = os.path.join(new_path, model) os.rename(move_old_path, move_new_path) os.rmdir(old_path) except Exception as e: print(f"Error: {e}") new_path = old_path def addLoggingLevel(levelName, levelNum, methodName=None): if not methodName: methodName = levelName.lower() def logForLevel(self, message, *args, **kwargs): if self.isEnabledFor(levelNum): self._log(levelNum, message, args, **kwargs) def logToRoot(message, *args, **kwargs): logging.log(levelNum, message, *args, **kwargs) logging.addLevelName(levelNum, levelName) setattr(logging, levelName, levelNum) setattr(logging.getLoggerClass(), methodName, logForLevel) setattr(logging, methodName, logToRoot) def get_image_md5hash(image: Image.Image): md5hash = hashlib.md5(image.tobytes()) return md5hash.hexdigest() def save_face_model(face: Face, filename: str) -> None: try: tensors = { "bbox": torch.tensor(face["bbox"]), "kps": torch.tensor(face["kps"]), "det_score": torch.tensor(face["det_score"]), "landmark_3d_68": torch.tensor(face["landmark_3d_68"]), "pose": torch.tensor(face["pose"]), "landmark_2d_106": torch.tensor(face["landmark_2d_106"]), "embedding": torch.tensor(face["embedding"]), "gender": torch.tensor(face["gender"]), "age": torch.tensor(face["age"]), } save_file(tensors, filename) print(f"Face model has been saved to '{filename}'") except Exception as e: print(f"Error: {e}") def load_face_model(filename: str): face = {} with safe_open(filename, framework="pt") as f: for k in f.keys(): face[k] = f.get_tensor(k).numpy() return Face(face) def get_ort_session(): global ORT_SESSION return ORT_SESSION def set_ort_session(model_path, providers) -> Any: global ORT_SESSION onnxruntime.set_default_logger_severity(3) ORT_SESSION = onnxruntime.InferenceSession(model_path, providers=providers) return ORT_SESSION def clear_ort_session() -> None: global ORT_SESSION ORT_SESSION = None def prepare_cropped_face(cropped_face): cropped_face = cropped_face[:, :, ::-1] / 255.0 cropped_face = (cropped_face - 0.5) / 0.5 cropped_face = np.expand_dims(cropped_face.transpose(2, 0, 1), axis = 0).astype(np.float32) return cropped_face def normalize_cropped_face(cropped_face): cropped_face = np.clip(cropped_face, -1, 1) cropped_face = (cropped_face + 1) / 2 cropped_face = cropped_face.transpose(1, 2, 0) cropped_face = (cropped_face * 255.0).round() cropped_face = cropped_face.astype(np.uint8)[:, :, ::-1] return cropped_face # author: Trung0246 ---> def add_folder_path_and_extensions(folder_name, full_folder_paths, extensions): # Iterate over the list of full folder paths for full_folder_path in full_folder_paths: # Use the provided function to add each model folder path folder_paths.add_model_folder_path(folder_name, full_folder_path) # Now handle the extensions. If the folder name already exists, update the extensions if folder_name in folder_paths.folder_names_and_paths: # Unpack the current paths and extensions current_paths, current_extensions = folder_paths.folder_names_and_paths[folder_name] # Update the extensions set with the new extensions updated_extensions = current_extensions | extensions # Reassign the updated tuple back to the dictionary folder_paths.folder_names_and_paths[folder_name] = (current_paths, updated_extensions) else: # If the folder name was not present, add_model_folder_path would have added it with the last path # Now we just need to update the set of extensions as it would be an empty set # Also ensure that all paths are included (since add_model_folder_path adds only one path at a time) folder_paths.folder_names_and_paths[folder_name] = (full_folder_paths, extensions) # <---