import os from typing import List import numpy as np import onnxruntime as ort from PIL import Image from PIL.Image import Image as PILImage from rembg.sessions import BaseSession class CustomBaseSession(BaseSession): def __init__(self, model_name: str): sess_opts = ort.SessionOptions() if "OMP_NUM_THREADS" in os.environ: sess_opts.inter_op_num_threads = int(os.environ["OMP_NUM_THREADS"]) super().__init__(model_name, sess_opts) class CustomSessionContainer: def __init__(self, mean_x, mean_y, mean_z, std_x, std_y, std_z, width, height) -> None: self.mean_x = mean_x self.mean_y = mean_y self.mean_z = mean_z self.std_x = std_x self.std_y = std_y self.std_z = std_z self.width = width self.height = height class CustomAbstractSession(CustomBaseSession, CustomSessionContainer): def predict(self, img: PILImage, *args, **kwargs) -> List[PILImage]: ort_outs = self.inner_session.run( None, self.normalize( img, (self.mean_x, self.mean_y, self.mean_z), (self.std_x, self.std_y, self.std_z), (self.width, self.height) ), ) pred = ort_outs[0][:, 0, :, :] ma = np.max(pred) mi = np.min(pred) pred = (pred - mi) / (ma - mi) pred = np.squeeze(pred) mask = Image.fromarray((pred * 255).astype("uint8"), mode="L") mask = mask.resize(img.size, Image.LANCZOS) return [mask] @classmethod def download_models(cls, *args, **kwargs): return os.path.join(cls.u2net_home(), f"{cls.name()}") def from_container(self, container: CustomSessionContainer): self.mean_x = container.mean_x self.mean_y = container.mean_y self.mean_z = container.mean_z self.std_x = container.std_x self.std_y = container.std_y self.std_z = container.std_z self.width = container.width self.height = container.height return self