import cv2 import numpy as np # The following code is almost entirely copied from INSwapper; the only change here is that we want to use Lanczos # interpolation for the warpAffine call. Now that the face has been restored, Lanczos represents a good compromise # whether the restored face needs to be upscaled or downscaled. def in_swap(img, bgr_fake, M): target_img = img IM = cv2.invertAffineTransform(M) img_white = np.full((bgr_fake.shape[0], bgr_fake.shape[1]), 255, dtype=np.float32) # Note the use of bicubic here; this is functionally the only change from the source code bgr_fake = cv2.warpAffine(bgr_fake, IM, (target_img.shape[1], target_img.shape[0]), borderValue=0.0, flags=cv2.INTER_CUBIC) img_white = cv2.warpAffine(img_white, IM, (target_img.shape[1], target_img.shape[0]), borderValue=0.0) img_white[img_white > 20] = 255 img_mask = img_white mask_h_inds, mask_w_inds = np.where(img_mask == 255) mask_h = np.max(mask_h_inds) - np.min(mask_h_inds) mask_w = np.max(mask_w_inds) - np.min(mask_w_inds) mask_size = int(np.sqrt(mask_h * mask_w)) k = max(mask_size // 10, 10) # k = max(mask_size//20, 6) # k = 6 kernel = np.ones((k, k), np.uint8) img_mask = cv2.erode(img_mask, kernel, iterations=1) kernel = np.ones((2, 2), np.uint8) k = max(mask_size // 20, 5) # k = 3 # k = 3 kernel_size = (k, k) blur_size = tuple(2 * i + 1 for i in kernel_size) img_mask = cv2.GaussianBlur(img_mask, blur_size, 0) k = 5 kernel_size = (k, k) blur_size = tuple(2 * i + 1 for i in kernel_size) img_mask /= 255 # img_mask = fake_diff img_mask = np.reshape(img_mask, [img_mask.shape[0], img_mask.shape[1], 1]) fake_merged = img_mask * bgr_fake + (1 - img_mask) * target_img.astype(np.float32) fake_merged = fake_merged.astype(np.uint8) return fake_merged