File size: 1,482 Bytes
7bdf62a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import sys
import os
assert len(sys.argv) == 3, 'Args are wrong.'
input_path = sys.argv[1]
output_path = sys.argv[2]
assert os.path.exists(input_path), 'Input model does not exist.'
assert not os.path.exists(output_path), 'Output filename already exists.'
assert os.path.exists(os.path.dirname(output_path)), 'Output path is not valid.'
import torch
from share import *
from cldm.model import create_model
def get_node_name(name, parent_name):
if len(name) <= len(parent_name):
return False, ''
p = name[:len(parent_name)]
if p != parent_name:
return False, ''
return True, name[len(parent_name):]
model = create_model(config_path='./configs/anydoor.yaml')
pretrained_weights = torch.load(input_path)
if 'state_dict' in pretrained_weights:
pretrained_weights = pretrained_weights['state_dict']
scratch_dict = model.state_dict()
target_dict = {}
for k in scratch_dict.keys():
is_control, name = get_node_name(k, 'control_')
if 'control_model.input_blocks.0.0' in k:
print('skipped key: ', k)
continue
if is_control:
copy_k = 'model.diffusion_' + name
else:
copy_k = k
if copy_k in pretrained_weights:
target_dict[k] = pretrained_weights[copy_k].clone()
else:
target_dict[k] = scratch_dict[k].clone()
print(f'These weights are newly added: {k}')
model.load_state_dict(target_dict, strict=False)
torch.save(model.state_dict(), output_path)
print('Done.')
|