File size: 5,918 Bytes
7bdf62a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
dependencies = ["torch"]
_DINOV2_BASE_URL = "https://dl.fbaipublicfiles.com/dinov2"
def _make_dinov2_model_name(arch_name: str, patch_size: int) -> str:
compact_arch_name = arch_name.replace("_", "")[:4]
return f"dinov2_{compact_arch_name}{patch_size}"
def _make_dinov2_model(
*,
arch_name: str = "vit_large",
img_size: int = 518,
patch_size: int = 14,
init_values: float = 1.0,
ffn_layer: str = "mlp",
block_chunks: int = 0,
pretrained: bool = True,
**kwargs,
):
from dinov2.models import vision_transformer as vits
model_name = _make_dinov2_model_name(arch_name, patch_size)
vit_kwargs = dict(
img_size=img_size,
patch_size=patch_size,
init_values=init_values,
ffn_layer=ffn_layer,
block_chunks=block_chunks,
)
vit_kwargs.update(**kwargs)
model = vits.__dict__[arch_name](**vit_kwargs)
#if pretrained:
# state_dict = torch.load('')
# model.load_state_dict(state_dict, strict=False)
return model
def dinov2_vits14(*, pretrained: bool = True, **kwargs):
"""
DINOv2 ViT-S/14 model (optionally) pretrained on the LVD-142M dataset.
"""
return _make_dinov2_model(arch_name="vit_small", pretrained=pretrained, **kwargs)
def dinov2_vitb14(*, pretrained: bool = True, **kwargs):
"""
DINOv2 ViT-B/14 model pretrained on the LVD-142M dataset.
"""
return _make_dinov2_model(arch_name="vit_base", pretrained=pretrained, **kwargs)
def dinov2_vitl14(*, pretrained: bool = True, **kwargs):
"""
DINOv2 ViT-L/14 model (optionally) pretrained on the LVD-142M dataset.
"""
return _make_dinov2_model(arch_name="vit_large", pretrained=pretrained, **kwargs)
def dinov2_vitg14(*, pretrained: bool = True, **kwargs):
"""
DINOv2 ViT-g/14 model (optionally) pretrained on the LVD-142M dataset.
"""
return _make_dinov2_model(arch_name="vit_giant2", ffn_layer="swiglufused", pretrained=pretrained, **kwargs)
def _make_dinov2_linear_head(
*,
model_name: str = "dinov2_vitl14",
embed_dim: int = 1024,
layers: int = 4,
pretrained: bool = True,
**kwargs,
):
assert layers in (1, 4), f"Unsupported number of layers: {layers}"
linear_head = nn.Linear((1 + layers) * embed_dim, 1_000)
if pretrained:
layers_str = str(layers) if layers == 4 else ""
url = _DINOV2_BASE_URL + f"/{model_name}/{model_name}_linear{layers_str}_head.pth"
state_dict = torch.hub.load_state_dict_from_url(url, map_location="cpu")
linear_head.load_state_dict(state_dict, strict=False)
return linear_head
class _LinearClassifierWrapper(nn.Module):
def __init__(self, *, backbone: nn.Module, linear_head: nn.Module, layers: int = 4):
super().__init__()
self.backbone = backbone
self.linear_head = linear_head
self.layers = layers
def forward(self, x):
if self.layers == 1:
x = self.backbone.forward_features(x)
cls_token = x["x_norm_clstoken"].squeeze(0)
patch_tokens = x["x_norm_patchtokens"].squeeze(0)
linear_input = torch.cat([
cls_token,
patch_tokens.mean(0)
])
elif self.layers == 4:
x = self.backbone.get_intermediate_layers(x, n=4, return_class_token=True)
linear_input = torch.cat([
x[0][1].squeeze(0),
x[1][1].squeeze(0),
x[2][1].squeeze(0),
x[3][1].squeeze(0),
x[3][0].squeeze(0).mean(0)
])
else:
assert False, f"Unsupported number of layers: {self.layers}"
return self.linear_head(linear_input)
def _make_dinov2_linear_classifier(
*,
arch_name: str = "vit_large",
layers: int = 4,
pretrained: bool = True,
**kwargs,
):
backbone = _make_dinov2_model(arch_name=arch_name, pretrained=pretrained, **kwargs)
embed_dim = backbone.embed_dim
patch_size = backbone.patch_size
model_name = _make_dinov2_model_name(arch_name, patch_size)
linear_head = _make_dinov2_linear_head(model_name=model_name, embed_dim=embed_dim, layers=layers, pretrained=pretrained)
return _LinearClassifierWrapper(backbone=backbone, linear_head=linear_head, layers=layers)
def dinov2_vits14_lc(*, layers: int = 4, pretrained: bool = True, **kwargs):
"""
Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-S/14 backbone (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k.
"""
return _make_dinov2_linear_classifier(arch_name="vit_small", layers=layers, pretrained=pretrained, **kwargs)
def dinov2_vitb14_lc(*, pretrained: bool = True, **kwargs):
"""
Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-B/14 backbone (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k.
"""
return _make_dinov2_linear_classifier(arch_name="vit_base", pretrained=pretrained, **kwargs)
def dinov2_vitl14_lc(*, pretrained: bool = True, **kwargs):
"""
Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-L/14 backbone (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k.
"""
return _make_dinov2_linear_classifier(arch_name="vit_large", pretrained=pretrained, **kwargs)
def dinov2_vitg14_lc(*, pretrained: bool = True, **kwargs):
"""
Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-g/14 backbone (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k.
"""
return _make_dinov2_linear_classifier(arch_name="vit_giant2", ffn_layer="swiglufused", pretrained=pretrained, **kwargs)
|