File size: 10,831 Bytes
7bdf62a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
"""MobileNet and MobileNetV2."""
'''
Code adopted from https://github.com/LikeLy-Journey/SegmenTron/blob/master/segmentron/models/backbones/mobilenet.py
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
# ============ Basic Blocks ============
class _ConvBNReLU(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0,
dilation=1, groups=1, relu6=False, norm_layer=nn.BatchNorm2d):
super(_ConvBNReLU, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias=False)
self.bn = norm_layer(out_channels)
self.relu = nn.ReLU6(True) if relu6 else nn.ReLU(True)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
class _DepthwiseConv(nn.Module):
"""conv_dw in MobileNet"""
def __init__(self, in_channels, out_channels, stride, norm_layer=nn.BatchNorm2d, **kwargs):
super(_DepthwiseConv, self).__init__()
self.conv = nn.Sequential(
_ConvBNReLU(in_channels, in_channels, 3, stride, 1, groups=in_channels, norm_layer=norm_layer),
_ConvBNReLU(in_channels, out_channels, 1, norm_layer=norm_layer))
def forward(self, x):
return self.conv(x)
class InvertedResidual(nn.Module):
def __init__(self, in_channels, out_channels, stride, expand_ratio, dilation=1, norm_layer=nn.BatchNorm2d):
super(InvertedResidual, self).__init__()
assert stride in [1, 2]
self.use_res_connect = stride == 1 and in_channels == out_channels
layers = list()
inter_channels = int(round(in_channels * expand_ratio))
if expand_ratio != 1:
# pw
layers.append(_ConvBNReLU(in_channels, inter_channels, 1, relu6=True, norm_layer=norm_layer))
layers.extend([
# dw
_ConvBNReLU(inter_channels, inter_channels, 3, stride, dilation, dilation,
groups=inter_channels, relu6=True, norm_layer=norm_layer),
# pw-linear
nn.Conv2d(inter_channels, out_channels, 1, bias=False),
norm_layer(out_channels)])
self.conv = nn.Sequential(*layers)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
# ============ Backbone ============
class MobileNetV2(nn.Module):
def __init__(self, num_classes=1000, norm_layer=nn.BatchNorm2d):
super(MobileNetV2, self).__init__()
output_stride = 8
self.multiplier = 1
if output_stride == 32:
dilations = [1, 1]
elif output_stride == 16:
dilations = [1, 2]
elif output_stride == 8:
dilations = [2, 4]
else:
raise NotImplementedError
inverted_residual_setting = [
# t, c, n, s
[1, 16, 1, 1],
[6, 24, 2, 2],
[6, 32, 3, 2],
[6, 64, 4, 2],
[6, 96, 3, 1],
[6, 160, 3, 2],
[6, 320, 1, 1]]
# building first layer
input_channels = int(32 * self.multiplier) if self.multiplier > 1.0 else 32
# last_channels = int(1280 * multiplier) if multiplier > 1.0 else 1280
self.conv1 = _ConvBNReLU(3, input_channels, 3, 2, 1, relu6=True, norm_layer=norm_layer)
# building inverted residual blocks
self.planes = input_channels
self.block1 = self._make_layer(InvertedResidual, self.planes, inverted_residual_setting[0:1],
norm_layer=norm_layer)
self.block2 = self._make_layer(InvertedResidual, self.planes, inverted_residual_setting[1:2],
norm_layer=norm_layer)
self.block3 = self._make_layer(InvertedResidual, self.planes, inverted_residual_setting[2:3],
norm_layer=norm_layer)
self.block4 = self._make_layer(InvertedResidual, self.planes, inverted_residual_setting[3:5],
dilations[0], norm_layer=norm_layer)
self.block5 = self._make_layer(InvertedResidual, self.planes, inverted_residual_setting[5:],
dilations[1], norm_layer=norm_layer)
self.last_inp_channels = self.planes
# building last several layers
# features = list()
# features.append(_ConvBNReLU(input_channels, last_channels, 1, relu6=True, norm_layer=norm_layer))
# features.append(nn.AdaptiveAvgPool2d(1))
# self.features = nn.Sequential(*features)
#
# self.classifier = nn.Sequential(
# nn.Dropout2d(0.2),
# nn.Linear(last_channels, num_classes))
# weight initialization
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
if m.bias is not None:
nn.init.zeros_(m.bias)
def _make_layer(self, block, planes, inverted_residual_setting, dilation=1, norm_layer=nn.BatchNorm2d):
features = list()
for t, c, n, s in inverted_residual_setting:
out_channels = int(c * self.multiplier)
stride = s if dilation == 1 else 1
features.append(block(planes, out_channels, stride, t, dilation, norm_layer))
planes = out_channels
for i in range(n - 1):
features.append(block(planes, out_channels, 1, t, norm_layer=norm_layer))
planes = out_channels
self.planes = planes
return nn.Sequential(*features)
def forward(self, x, side_feature):
x = self.conv1(x)
x = x + side_feature
x = self.block1(x)
c1 = self.block2(x)
c2 = self.block3(c1)
c3 = self.block4(c2)
c4 = self.block5(c3)
# x = self.features(x)
# x = self.classifier(x.view(x.size(0), x.size(1)))
return c1, c2, c3, c4
def mobilenet_v2(norm_layer=nn.BatchNorm2d):
return MobileNetV2(norm_layer=norm_layer)
# ============ Segmentor ============
class LRASPP(nn.Module):
"""Lite R-ASPP"""
def __init__(self, in_channels, out_channels, norm_layer=nn.BatchNorm2d, **kwargs):
super(LRASPP, self).__init__()
self.b0 = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 1, bias=False),
norm_layer(out_channels),
nn.ReLU(True)
)
self.b1 = nn.Sequential(
nn.AdaptiveAvgPool2d((2,2)),
nn.Conv2d(in_channels, out_channels, 1, bias=False),
nn.Sigmoid(),
)
def forward(self, x):
size = x.size()[2:]
feat1 = self.b0(x)
feat2 = self.b1(x)
feat2 = F.interpolate(feat2, size, mode='bilinear', align_corners=True)
x = feat1 * feat2
return x
class MobileSeg(nn.Module):
def __init__(self, nclass=1, **kwargs):
super(MobileSeg, self).__init__()
self.backbone = mobilenet_v2()
self.lraspp = LRASPP(320,128)
self.fusion_conv1 = nn.Conv2d(128,16,1,1,0)
self.fusion_conv2 = nn.Conv2d(24,16,1,1,0)
self.head = nn.Conv2d(16,nclass,1,1,0)
self.aux_head = nn.Conv2d(16,nclass,1,1,0)
def forward(self, x, side_feature):
x4, _, _, x8 = self.backbone(x, side_feature)
x8 = self.lraspp(x8)
x8 = F.interpolate(x8, x4.size()[2:], mode='bilinear', align_corners=True)
x8 = self.fusion_conv1(x8)
pred_aux = self.aux_head(x8)
x4 = self.fusion_conv2(x4)
x = x4 + x8
pred = self.head(x)
return pred, pred_aux, x
def load_pretrained_weights(self, path_to_weights= ' '):
backbone_state_dict = self.backbone.state_dict()
pretrained_state_dict = torch.load(path_to_weights, map_location='cpu')
ckpt_keys = set(pretrained_state_dict.keys())
own_keys = set(backbone_state_dict.keys())
missing_keys = own_keys - ckpt_keys
unexpected_keys = ckpt_keys - own_keys
print('Loading Mobilnet V2')
print('Missing Keys: ', missing_keys)
print('Unexpected Keys: ', unexpected_keys)
backbone_state_dict.update(pretrained_state_dict)
self.backbone.load_state_dict(backbone_state_dict, strict= False)
class ScaleLayer(nn.Module):
def __init__(self, init_value=1.0, lr_mult=1):
super().__init__()
self.lr_mult = lr_mult
self.scale = nn.Parameter(
torch.full((1,), init_value / lr_mult, dtype=torch.float32)
)
def forward(self, x):
scale = torch.abs(self.scale * self.lr_mult)
return x * scale
# ============ Interactive Segmentor ============
class BaselineModel(nn.Module):
def __init__(self, backbone_lr_mult=0.1,
norm_layer=nn.BatchNorm2d, **kwargs):
super().__init__()
self.feature_extractor = MobileSeg()
side_feature_ch = 32
mt_layers = [
nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=2, padding=1),
nn.LeakyReLU(negative_slope=0.2),
nn.Conv2d(in_channels=16, out_channels=side_feature_ch, kernel_size=3, stride=1, padding=1),
ScaleLayer(init_value=0.05, lr_mult=1)
]
self.maps_transform = nn.Sequential(*mt_layers)
def backbone_forward(self, image, coord_features=None):
mask, mask_aux, feature = self.feature_extractor(image, coord_features)
return {'instances': mask, 'instances_aux':mask_aux, 'feature': feature}
def prepare_input(self, image):
prev_mask = torch.zeros_like(image)[:,:1,:,:]
return image, prev_mask
def forward(self, image, coarse_mask):
image, prev_mask = self.prepare_input(image)
coord_features = torch.cat((prev_mask, coarse_mask, coarse_mask * 0.0), dim=1)
click_map = coord_features[:,1:,:,:]
coord_features = self.maps_transform(coord_features)
outputs = self.backbone_forward(image, coord_features)
pred = nn.functional.interpolate(
outputs['instances'],
size=image.size()[2:],
mode='bilinear', align_corners=True
)
outputs['instances'] = torch.sigmoid(pred)
return outputs
|