File size: 8,621 Bytes
7bdf62a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import json
import cv2
import numpy as np
import os
from torch.utils.data import Dataset
from PIL import Image
import cv2
from .data_utils import *
cv2.setNumThreads(0)
cv2.ocl.setUseOpenCL(False)
import albumentations as A
class BaseDataset(Dataset):
def __init__(self):
image_mask_dict = {}
self.data = []
def __len__(self):
# We adjust the ratio of different dataset by setting the length.
pass
def aug_data_back(self, image):
transform = A.Compose([
A.ColorJitter(p=0.5, brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5),
A.ChannelShuffle()
])
transformed = transform(image=image.astype(np.uint8))
transformed_image = transformed["image"]
return transformed_image
def aug_data_mask(self, image, mask):
transform = A.Compose([
A.HorizontalFlip(p=0.5),
A.RandomBrightnessContrast(p=0.5),
#A.Rotate(limit=20, border_mode=cv2.BORDER_CONSTANT, value=(0,0,0)),
])
transformed = transform(image=image.astype(np.uint8), mask = mask)
transformed_image = transformed["image"]
transformed_mask = transformed["mask"]
return transformed_image, transformed_mask
def check_region_size(self, image, yyxx, ratio, mode = 'max'):
pass_flag = True
H,W = image.shape[0], image.shape[1]
H,W = H * ratio, W * ratio
y1,y2,x1,x2 = yyxx
h,w = y2-y1,x2-x1
if mode == 'max':
if h > H or w > W:
pass_flag = False
elif mode == 'min':
if h < H or w < W:
pass_flag = False
return pass_flag
def __getitem__(self, idx):
while(True):
try:
idx = np.random.randint(0, len(self.data)-1)
item = self.get_sample(idx)
return item
except:
idx = np.random.randint(0, len(self.data)-1)
def get_sample(self, idx):
# Implemented for each specific dataset
pass
def sample_timestep(self, max_step =1000):
if np.random.rand() < 0.3:
step = np.random.randint(0,max_step)
return np.array([step])
if self.dynamic == 1:
# coarse videos
step_start = max_step // 2
step_end = max_step
elif self.dynamic == 0:
# static images
step_start = 0
step_end = max_step // 2
else:
# fine multi-view images/videos/3Ds
step_start = 0
step_end = max_step
step = np.random.randint(step_start, step_end)
return np.array([step])
def check_mask_area(self, mask):
H,W = mask.shape[0], mask.shape[1]
ratio = mask.sum() / (H * W)
if ratio > 0.8 * 0.8 or ratio < 0.1 * 0.1:
return False
else:
return True
def process_pairs(self, ref_image, ref_mask, tar_image, tar_mask, max_ratio = 0.8):
assert mask_score(ref_mask) > 0.90
assert self.check_mask_area(ref_mask) == True
assert self.check_mask_area(tar_mask) == True
# ========= Reference ===========
'''
# similate the case that the mask for reference object is coarse. Seems useless :(
if np.random.uniform(0, 1) < 0.7:
ref_mask_clean = ref_mask.copy()
ref_mask_clean = np.stack([ref_mask_clean,ref_mask_clean,ref_mask_clean],-1)
ref_mask = perturb_mask(ref_mask, 0.6, 0.9)
# select a fake bg to avoid the background leakage
fake_target = tar_image.copy()
h,w = ref_image.shape[0], ref_image.shape[1]
fake_targe = cv2.resize(fake_target, (w,h))
fake_back = np.fliplr(np.flipud(fake_target))
fake_back = self.aug_data_back(fake_back)
ref_image = ref_mask_clean * ref_image + (1-ref_mask_clean) * fake_back
'''
# Get the outline Box of the reference image
ref_box_yyxx = get_bbox_from_mask(ref_mask)
assert self.check_region_size(ref_mask, ref_box_yyxx, ratio = 0.10, mode = 'min') == True
# Filtering background for the reference image
ref_mask_3 = np.stack([ref_mask,ref_mask,ref_mask],-1)
masked_ref_image = ref_image * ref_mask_3 + np.ones_like(ref_image) * 255 * (1-ref_mask_3)
y1,y2,x1,x2 = ref_box_yyxx
masked_ref_image = masked_ref_image[y1:y2,x1:x2,:]
ref_mask = ref_mask[y1:y2,x1:x2]
ratio = np.random.randint(11, 15) / 10
masked_ref_image, ref_mask = expand_image_mask(masked_ref_image, ref_mask, ratio=ratio)
ref_mask_3 = np.stack([ref_mask,ref_mask,ref_mask],-1)
# Padding reference image to square and resize to 224
masked_ref_image = pad_to_square(masked_ref_image, pad_value = 255, random = False)
masked_ref_image = cv2.resize(masked_ref_image.astype(np.uint8), (224,224) ).astype(np.uint8)
ref_mask_3 = pad_to_square(ref_mask_3 * 255, pad_value = 0, random = False)
ref_mask_3 = cv2.resize(ref_mask_3.astype(np.uint8), (224,224) ).astype(np.uint8)
ref_mask = ref_mask_3[:,:,0]
# Augmenting reference image
#masked_ref_image_aug = self.aug_data(masked_ref_image)
# Getting for high-freqency map
masked_ref_image_compose, ref_mask_compose = self.aug_data_mask(masked_ref_image, ref_mask)
masked_ref_image_aug = masked_ref_image_compose.copy()
ref_mask_3 = np.stack([ref_mask_compose,ref_mask_compose,ref_mask_compose],-1)
ref_image_collage = sobel(masked_ref_image_compose, ref_mask_compose/255)
# ========= Training Target ===========
tar_box_yyxx = get_bbox_from_mask(tar_mask)
tar_box_yyxx = expand_bbox(tar_mask, tar_box_yyxx, ratio=[1.1,1.2]) #1.1 1.3
assert self.check_region_size(tar_mask, tar_box_yyxx, ratio = max_ratio, mode = 'max') == True
# Cropping around the target object
tar_box_yyxx_crop = expand_bbox(tar_image, tar_box_yyxx, ratio=[1.3, 3.0])
tar_box_yyxx_crop = box2squre(tar_image, tar_box_yyxx_crop) # crop box
y1,y2,x1,x2 = tar_box_yyxx_crop
cropped_target_image = tar_image[y1:y2,x1:x2,:]
cropped_tar_mask = tar_mask[y1:y2,x1:x2]
tar_box_yyxx = box_in_box(tar_box_yyxx, tar_box_yyxx_crop)
y1,y2,x1,x2 = tar_box_yyxx
# Prepairing collage image
ref_image_collage = cv2.resize(ref_image_collage.astype(np.uint8), (x2-x1, y2-y1))
ref_mask_compose = cv2.resize(ref_mask_compose.astype(np.uint8), (x2-x1, y2-y1))
ref_mask_compose = (ref_mask_compose > 128).astype(np.uint8)
collage = cropped_target_image.copy()
collage[y1:y2,x1:x2,:] = ref_image_collage
collage_mask = cropped_target_image.copy() * 0.0
collage_mask[y1:y2,x1:x2,:] = 1.0
if np.random.uniform(0, 1) < 0.7:
cropped_tar_mask = perturb_mask(cropped_tar_mask)
collage_mask = np.stack([cropped_tar_mask,cropped_tar_mask,cropped_tar_mask],-1)
H1, W1 = collage.shape[0], collage.shape[1]
cropped_target_image = pad_to_square(cropped_target_image, pad_value = 0, random = False).astype(np.uint8)
collage = pad_to_square(collage, pad_value = 0, random = False).astype(np.uint8)
collage_mask = pad_to_square(collage_mask, pad_value = 2, random = False).astype(np.uint8)
H2, W2 = collage.shape[0], collage.shape[1]
cropped_target_image = cv2.resize(cropped_target_image.astype(np.uint8), (512,512)).astype(np.float32)
collage = cv2.resize(collage.astype(np.uint8), (512,512)).astype(np.float32)
collage_mask = cv2.resize(collage_mask.astype(np.uint8), (512,512), interpolation = cv2.INTER_NEAREST).astype(np.float32)
collage_mask[collage_mask == 2] = -1
# Prepairing dataloader items
masked_ref_image_aug = masked_ref_image_aug / 255
cropped_target_image = cropped_target_image / 127.5 - 1.0
collage = collage / 127.5 - 1.0
collage = np.concatenate([collage, collage_mask[:,:,:1] ] , -1)
item = dict(
ref=masked_ref_image_aug.copy(),
jpg=cropped_target_image.copy(),
hint=collage.copy(),
extra_sizes=np.array([H1, W1, H2, W2]),
tar_box_yyxx_crop=np.array(tar_box_yyxx_crop)
)
return item
|