File size: 12,019 Bytes
3af23fa 8d00a82 a34661c 3af23fa 19ba71c 3af23fa 19ba71c 3af23fa 19ba71c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import cv2
import einops
import numpy as np
import torch
import random
from pytorch_lightning import seed_everything
from cldm.model import create_model, load_state_dict
from cldm.ddim_hacked import DDIMSampler
from cldm.hack import disable_verbosity, enable_sliced_attention
from datasets.data_utils import *
cv2.setNumThreads(0)
cv2.ocl.setUseOpenCL(False)
import albumentations as A
from omegaconf import OmegaConf
from PIL import Image
save_memory = True
disable_verbosity()
if save_memory:
enable_sliced_attention()
config = OmegaConf.load('./configs/inference.yaml')
current_model_ckpt = config.pretrained_model
model_config = config.config_file
model = create_model(model_config).cpu()
model.load_state_dict(load_state_dict(current_model_ckpt, location='cuda'))
model = model.cuda()
ddim_sampler = DDIMSampler(model)
def load_model(new_model_ckpt):
global model, ddim_sampler, current_model_ckpt
if new_model_ckpt != current_model_ckpt:
print(f"Loading new model: {new_model_ckpt}")
model.load_state_dict(load_state_dict(f'/workspace/train-wefadoor-master/anydoor/lightning_logs/version_1/checkpoints/epoch=1-step=2499.ckpt', location='cuda'))
# model.load_state_dict(load_state_dict(f'/workspace/300k_wefa_boys_slim/lightning_logs/version_0/checkpoints/{new_model_ckpt}', location='cuda'))
current_model_ckpt = new_model_ckpt
print("New model loaded successfully.")
else:
print("Same model is already loaded, skipping reload.")
def aug_data_mask(image, mask):
transform = A.Compose([
A.HorizontalFlip(p=0.5),
A.RandomBrightnessContrast(p=0.5),
])
transformed = transform(image=image.astype(np.uint8), mask = mask)
transformed_image = transformed["image"]
transformed_mask = transformed["mask"]
return transformed_image, transformed_mask
def process_pairs(ref_image, ref_mask, tar_image, tar_mask):
# ========= Reference ===========
# ref expand
ref_box_yyxx = get_bbox_from_mask(ref_mask)
# ref filter mask
ref_mask_3 = np.stack([ref_mask,ref_mask,ref_mask],-1)
masked_ref_image = ref_image * ref_mask_3 + np.ones_like(ref_image) * 255 * (1-ref_mask_3)
y1,y2,x1,x2 = ref_box_yyxx
masked_ref_image = masked_ref_image[y1:y2,x1:x2,:]
ref_mask = ref_mask[y1:y2,x1:x2]
ratio = np.random.randint(12, 13) / 10
masked_ref_image, ref_mask = expand_image_mask(masked_ref_image, ref_mask, ratio=ratio)
ref_mask_3 = np.stack([ref_mask,ref_mask,ref_mask],-1)
# to square and resize
masked_ref_image = pad_to_square(masked_ref_image, pad_value = 255, random = False)
masked_ref_image = cv2.resize(masked_ref_image, (224,224) ).astype(np.uint8)
ref_mask_3 = pad_to_square(ref_mask_3 * 255, pad_value = 0, random = False)
ref_mask_3 = cv2.resize(ref_mask_3, (224,224) ).astype(np.uint8)
ref_mask = ref_mask_3[:,:,0]
# ref aug
masked_ref_image_aug = masked_ref_image #aug_data(masked_ref_image)
# collage aug
masked_ref_image_compose, ref_mask_compose = masked_ref_image, ref_mask #aug_data_mask(masked_ref_image, ref_mask)
masked_ref_image_aug = masked_ref_image_compose.copy()
ref_mask_3 = np.stack([ref_mask_compose,ref_mask_compose,ref_mask_compose],-1)
ref_image_collage = sobel(masked_ref_image_compose, ref_mask_compose/255)
# ========= Target ===========
tar_box_yyxx = get_bbox_from_mask(tar_mask)
tar_box_yyxx = expand_bbox(tar_mask, tar_box_yyxx, ratio=[1.1,1.2])
# crop
tar_box_yyxx_crop = expand_bbox(tar_image, tar_box_yyxx, ratio=[1.5, 3]) #1.2 1.6
tar_box_yyxx_crop = box2squre(tar_image, tar_box_yyxx_crop) # crop box
y1,y2,x1,x2 = tar_box_yyxx_crop
cropped_target_image = tar_image[y1:y2,x1:x2,:]
tar_box_yyxx = box_in_box(tar_box_yyxx, tar_box_yyxx_crop)
y1,y2,x1,x2 = tar_box_yyxx
# collage
ref_image_collage = cv2.resize(ref_image_collage, (x2-x1, y2-y1))
ref_mask_compose = cv2.resize(ref_mask_compose.astype(np.uint8), (x2-x1, y2-y1))
ref_mask_compose = (ref_mask_compose > 128).astype(np.uint8)
collage = cropped_target_image.copy()
collage[y1:y2,x1:x2,:] = ref_image_collage
collage_mask = cropped_target_image.copy() * 0.0
collage_mask[y1:y2,x1:x2,:] = 1.0
# the size before pad
H1, W1 = collage.shape[0], collage.shape[1]
cropped_target_image = pad_to_square(cropped_target_image, pad_value = 0, random = False).astype(np.uint8)
collage = pad_to_square(collage, pad_value = 0, random = False).astype(np.uint8)
collage_mask = pad_to_square(collage_mask, pad_value = -1, random = False).astype(np.uint8)
# the size after pad
H2, W2 = collage.shape[0], collage.shape[1]
cropped_target_image = cv2.resize(cropped_target_image, (512,512)).astype(np.float32)
collage = cv2.resize(collage, (512,512)).astype(np.float32)
collage_mask = (cv2.resize(collage_mask, (512,512)).astype(np.float32) > 0.5).astype(np.float32)
masked_ref_image_aug = masked_ref_image_aug / 255
cropped_target_image = cropped_target_image / 127.5 - 1.0
collage = collage / 127.5 - 1.0
collage = np.concatenate([collage, collage_mask[:,:,:1] ] , -1)
item = dict(ref=masked_ref_image_aug.copy(), jpg=cropped_target_image.copy(), hint=collage.copy(), extra_sizes=np.array([H1, W1, H2, W2]), tar_box_yyxx_crop=np.array( tar_box_yyxx_crop ) )
return item
def crop_back( pred, tar_image, extra_sizes, tar_box_yyxx_crop):
H1, W1, H2, W2 = extra_sizes
y1,y2,x1,x2 = tar_box_yyxx_crop
pred = cv2.resize(pred, (W2, H2))
m = 5 # maigin_pixel
if W1 == H1:
tar_image[y1+m :y2-m, x1+m:x2-m, :] = pred[m:-m, m:-m]
return tar_image
if W1 < W2:
pad1 = int((W2 - W1) / 2)
pad2 = W2 - W1 - pad1
pred = pred[:,pad1: -pad2, :]
else:
pad1 = int((H2 - H1) / 2)
pad2 = H2 - H1 - pad1
pred = pred[pad1: -pad2, :, :]
gen_image = tar_image.copy()
gen_image[y1+m :y2-m, x1+m:x2-m, :] = pred[m:-m, m:-m]
return gen_image
def inference_single_image(ref_image, ref_mask, tar_image, tar_mask, guidance_scale, seed, steps):
item = process_pairs(ref_image, ref_mask, tar_image, tar_mask)
ref = item['ref'] * 255
tar = item['jpg'] * 127.5 + 127.5
hint = item['hint'] * 127.5 + 127.5
hint_image = hint[:,:,:-1]
hint_mask = item['hint'][:,:,-1] * 255
hint_mask = np.stack([hint_mask,hint_mask,hint_mask],-1)
ref = cv2.resize(ref.astype(np.uint8), (512,512))
seed = random.randint(0, 65535)
if save_memory:
model.low_vram_shift(is_diffusing=False)
ref = item['ref']
tar = item['jpg']
hint = item['hint']
num_samples = 1
control = torch.from_numpy(hint.copy()).float().cuda()
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
clip_input = torch.from_numpy(ref.copy()).float().cuda()
clip_input = torch.stack([clip_input for _ in range(num_samples)], dim=0)
clip_input = einops.rearrange(clip_input, 'b h w c -> b c h w').clone()
guess_mode = False
H,W = 512,512
cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning( clip_input )]}
un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([torch.zeros((1,3,224,224))] * num_samples)]}
shape = (4, H // 8, W // 8)
if save_memory:
model.low_vram_shift(is_diffusing=True)
# ====
num_samples = 1 #gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
image_resolution = 512 #gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
strength = 1 #gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
guess_mode = False #gr.Checkbox(label='Guess Mode', value=False)
#detect_resolution = 512 #gr.Slider(label="Segmentation Resolution", minimum=128, maximum=1024, value=512, step=1)
ddim_steps = steps #gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
scale = guidance_scale #gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
seed = seed #gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
eta = 0.0 #gr.Number(label="eta (DDIM)", value=0.0)
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
shape, cond, verbose=False, eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
if save_memory:
model.low_vram_shift(is_diffusing=False)
x_samples = model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy()#.clip(0, 255).astype(np.uint8)
result = x_samples[0][:,:,::-1]
result = np.clip(result,0,255)
pred = x_samples[0]
pred = np.clip(pred,0,255)[1:,:,:]
sizes = item['extra_sizes']
tar_box_yyxx_crop = item['tar_box_yyxx_crop']
gen_image = crop_back(pred, tar_image, sizes, tar_box_yyxx_crop)
return gen_image
import cv2
import numpy as np
import base64
import json
import sys
from io import BytesIO
from PIL import Image
def base64_to_cv2_image(base64_str):
img_str = base64.b64decode(base64_str)
np_img = np.frombuffer(img_str, dtype=np.uint8)
img = cv2.imdecode(np_img, cv2.IMREAD_COLOR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img
def image_to_base64(img):
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
_, buffer = cv2.imencode('.jpg', img)
base64_str = base64.b64encode(buffer).decode("utf-8")
return base64_str
def inference_single_image(ref_image, ref_mask, tar_image, tar_mask, guidance_scale, seed, steps):
# Replace this with your image processing model function
# Placeholder operation (e.g., blending images for demonstration)
np.random.seed(seed)
output_img = cv2.addWeighted(ref_image, 0.5, tar_image, 0.5, 0)
return output_img
def process_images(data):
model_name = data.get('model', 'default_model.ckpt')
model_ckpt_map = {
'boys': 'boys.ckpt',
'men': 'men.ckpt',
'women': 'women.ckpt',
'girls': 'girls.ckpt'
}
current_model_ckpt = 'default_model.ckpt'
new_model_ckpt = model_ckpt_map.get(model_name, current_model_ckpt)
# load_model(new_model_ckpt) # Load model if needed
seed = int(data.get('seed', 42))
steps = int(data.get('steps', 50))
guidance_scale = float(data.get('guidance_scale', 1.0))
ref_image = base64_to_cv2_image(data['ref_image'])
tar_image = base64_to_cv2_image(data['tar_image'])
ref_mask_img = base64_to_cv2_image(data['ref_mask'])
ref_mask = cv2.cvtColor(ref_mask_img, cv2.COLOR_RGB2GRAY)
ref_mask = (ref_mask > 128).astype(np.uint8)
tar_mask_img = base64_to_cv2_image(data['tar_mask'])
tar_mask = cv2.cvtColor(tar_mask_img, cv2.COLOR_RGB2GRAY)
tar_mask = (tar_mask > 128).astype(np.uint8)
gen_image = inference_single_image(ref_image, ref_mask, tar_image, tar_mask, guidance_scale, seed, steps)
gen_image_base64 = image_to_base64(gen_image)
return gen_image_base64
if __name__ == "__main__":
if len(sys.argv) < 2:
print("Usage: python script.py '<json_data>'")
sys.exit(1)
# Read JSON data from command line argument
json_data = sys.argv[1]
try:
data = json.loads(json_data)
result_image_base64 = process_images(data)
print(result_image_base64)
except Exception as e:
print(f"Error processing images: {e}", file=sys.stderr)
|