|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.utils.checkpoint import checkpoint |
|
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel |
|
import torchvision.transforms as T |
|
import open_clip |
|
from ldm.util import default, count_params |
|
from PIL import Image |
|
from open_clip.transform import image_transform |
|
import sys |
|
|
|
|
|
class LayerNormFp32(nn.LayerNorm): |
|
"""Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back).""" |
|
|
|
def forward(self, x: torch.Tensor): |
|
orig_type = x.dtype |
|
x = F.layer_norm(x.to(torch.float32), self.normalized_shape, self.weight, self.bias, self.eps) |
|
return x.to(orig_type) |
|
|
|
class LayerNorm(nn.LayerNorm): |
|
"""Subclass torch's LayerNorm (with cast back to input dtype).""" |
|
|
|
def forward(self, x: torch.Tensor): |
|
orig_type = x.dtype |
|
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) |
|
return x.to(orig_type) |
|
|
|
class AbstractEncoder(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
def encode(self, *args, **kwargs): |
|
raise NotImplementedError |
|
|
|
|
|
class IdentityEncoder(AbstractEncoder): |
|
|
|
def encode(self, x): |
|
return x |
|
|
|
|
|
class ClassEmbedder(nn.Module): |
|
def __init__(self, embed_dim, n_classes=1000, key='class', ucg_rate=0.1): |
|
super().__init__() |
|
self.key = key |
|
self.embedding = nn.Embedding(n_classes, embed_dim) |
|
self.n_classes = n_classes |
|
self.ucg_rate = ucg_rate |
|
|
|
def forward(self, batch, key=None, disable_dropout=False): |
|
if key is None: |
|
key = self.key |
|
|
|
c = batch[key][:, None] |
|
if self.ucg_rate > 0. and not disable_dropout: |
|
mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate) |
|
c = mask * c + (1-mask) * torch.ones_like(c)*(self.n_classes-1) |
|
c = c.long() |
|
c = self.embedding(c) |
|
return c |
|
|
|
def get_unconditional_conditioning(self, bs, device="cuda"): |
|
uc_class = self.n_classes - 1 |
|
uc = torch.ones((bs,), device=device) * uc_class |
|
uc = {self.key: uc} |
|
return uc |
|
|
|
|
|
def disabled_train(self, mode=True): |
|
"""Overwrite model.train with this function to make sure train/eval mode |
|
does not change anymore.""" |
|
return self |
|
|
|
|
|
class FrozenT5Embedder(AbstractEncoder): |
|
"""Uses the T5 transformer encoder for text""" |
|
def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True): |
|
super().__init__() |
|
self.tokenizer = T5Tokenizer.from_pretrained(version) |
|
self.transformer = T5EncoderModel.from_pretrained(version) |
|
self.device = device |
|
self.max_length = max_length |
|
if freeze: |
|
self.freeze() |
|
|
|
def freeze(self): |
|
self.transformer = self.transformer.eval() |
|
|
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
def forward(self, text): |
|
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, |
|
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") |
|
tokens = batch_encoding["input_ids"].to(self.device) |
|
outputs = self.transformer(input_ids=tokens) |
|
|
|
z = outputs.last_hidden_state |
|
return z |
|
|
|
def encode(self, text): |
|
return self(text) |
|
|
|
|
|
class FrozenCLIPEmbedder(AbstractEncoder): |
|
"""Uses the CLIP transformer encoder for text (from huggingface)""" |
|
LAYERS = [ |
|
"last", |
|
"pooled", |
|
"hidden" |
|
] |
|
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77, |
|
freeze=True, layer="last", layer_idx=None): |
|
super().__init__() |
|
assert layer in self.LAYERS |
|
self.tokenizer = CLIPTokenizer.from_pretrained(version) |
|
self.transformer = CLIPTextModel.from_pretrained(version) |
|
self.device = device |
|
self.max_length = max_length |
|
if freeze: |
|
self.freeze() |
|
self.layer = layer |
|
self.layer_idx = layer_idx |
|
if layer == "hidden": |
|
assert layer_idx is not None |
|
assert 0 <= abs(layer_idx) <= 12 |
|
|
|
def freeze(self): |
|
self.transformer = self.transformer.eval() |
|
|
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
def forward(self, text): |
|
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, |
|
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") |
|
tokens = batch_encoding["input_ids"].to(self.device) |
|
outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden") |
|
if self.layer == "last": |
|
z = outputs.last_hidden_state |
|
elif self.layer == "pooled": |
|
z = outputs.pooler_output[:, None, :] |
|
else: |
|
z = outputs.hidden_states[self.layer_idx] |
|
return z |
|
|
|
def encode(self, text): |
|
return self(text) |
|
|
|
|
|
class FrozenOpenCLIPEmbedder(AbstractEncoder): |
|
""" |
|
Uses the OpenCLIP transformer encoder for text |
|
""" |
|
LAYERS = [ |
|
|
|
"last", |
|
"penultimate" |
|
] |
|
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77, |
|
freeze=True, layer="last"): |
|
super().__init__() |
|
assert layer in self.LAYERS |
|
model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version) |
|
del model.visual |
|
self.model = model |
|
|
|
self.device = device |
|
self.max_length = max_length |
|
if freeze: |
|
self.freeze() |
|
self.layer = layer |
|
if self.layer == "last": |
|
self.layer_idx = 0 |
|
elif self.layer == "penultimate": |
|
self.layer_idx = 1 |
|
else: |
|
raise NotImplementedError() |
|
|
|
def freeze(self): |
|
self.model = self.model.eval() |
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
def forward(self, text): |
|
tokens = open_clip.tokenize(text) |
|
z = self.encode_with_transformer(tokens.to(self.device)) |
|
return z |
|
|
|
def encode_with_transformer(self, text): |
|
x = self.model.token_embedding(text) |
|
x = x + self.model.positional_embedding |
|
x = x.permute(1, 0, 2) |
|
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask) |
|
x = x.permute(1, 0, 2) |
|
x = self.model.ln_final(x) |
|
return x |
|
|
|
def text_transformer_forward(self, x: torch.Tensor, attn_mask = None): |
|
for i, r in enumerate(self.model.transformer.resblocks): |
|
if i == len(self.model.transformer.resblocks) - self.layer_idx: |
|
break |
|
if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint(r, x, attn_mask) |
|
else: |
|
x = r(x, attn_mask=attn_mask) |
|
return x |
|
|
|
def encode(self, text): |
|
return self(text) |
|
|
|
|
|
|
|
class FrozenCLIPT5Encoder(AbstractEncoder): |
|
def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cuda", |
|
clip_max_length=77, t5_max_length=77): |
|
super().__init__() |
|
self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length) |
|
self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length) |
|
print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder)*1.e-6:.2f} M parameters, " |
|
f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder)*1.e-6:.2f} M params.") |
|
|
|
def encode(self, text): |
|
return self(text) |
|
|
|
def forward(self, text): |
|
clip_z = self.clip_encoder.encode(text) |
|
t5_z = self.t5_encoder.encode(text) |
|
return [clip_z, t5_z] |
|
|
|
|
|
class FrozenOpenCLIPImageEncoder(AbstractEncoder): |
|
""" |
|
Uses the OpenCLIP transformer encoder for image |
|
""" |
|
|
|
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", freeze=True): |
|
super().__init__() |
|
model, _, preprocess= open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version) |
|
del model.transformer |
|
self.model = model |
|
self.model.visual.output_tokens = True |
|
self.device = device |
|
if freeze: |
|
self.freeze() |
|
self.image_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) |
|
self.image_std = torch.tensor([0.26862954, 0.26130258, 0.275777]).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) |
|
self.projector_token = nn.Linear(1280,1024) |
|
self.projector_embed = nn.Linear(1024,1024) |
|
|
|
def freeze(self): |
|
self.model.visual.eval() |
|
for param in self.model.parameters(): |
|
param.requires_grad = False |
|
|
|
def forward(self, image): |
|
if isinstance(image,list): |
|
image = torch.cat(image,0) |
|
image = (image.to(self.device) - self.image_mean.to(self.device)) / self.image_std.to(self.device) |
|
image_features, tokens = self.model.visual(image) |
|
image_features = image_features.unsqueeze(1) |
|
image_features = self.projector_embed(image_features) |
|
tokens = self.projector_token(tokens) |
|
hint = torch.cat([image_features,tokens],1) |
|
return hint |
|
|
|
def encode(self, image): |
|
return self(image) |
|
|
|
sys.path.append("./dinov2") |
|
import hubconf |
|
from omegaconf import OmegaConf |
|
config_path = './configs/anydoor.yaml' |
|
config = OmegaConf.load(config_path) |
|
DINOv2_weight_path = config.model.params.cond_stage_config.weight |
|
|
|
class FrozenDinoV2Encoder(AbstractEncoder): |
|
""" |
|
Uses the DINOv2 encoder for image |
|
""" |
|
def __init__(self, device="cuda", freeze=True): |
|
super().__init__() |
|
dinov2 = hubconf.dinov2_vitg14() |
|
state_dict = torch.load(DINOv2_weight_path) |
|
dinov2.load_state_dict(state_dict, strict=False) |
|
self.model = dinov2.to(device) |
|
self.device = device |
|
if freeze: |
|
self.freeze() |
|
self.image_mean = torch.tensor([0.485, 0.456, 0.406]).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) |
|
self.image_std = torch.tensor([0.229, 0.224, 0.225]).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) |
|
self.projector = nn.Linear(1536,1024) |
|
|
|
def freeze(self): |
|
self.model.eval() |
|
for param in self.model.parameters(): |
|
param.requires_grad = False |
|
|
|
def forward(self, image): |
|
if isinstance(image,list): |
|
image = torch.cat(image,0) |
|
|
|
image = (image.to(self.device) - self.image_mean.to(self.device)) / self.image_std.to(self.device) |
|
features = self.model.forward_features(image) |
|
tokens = features["x_norm_patchtokens"] |
|
image_features = features["x_norm_clstoken"] |
|
image_features = image_features.unsqueeze(1) |
|
hint = torch.cat([image_features,tokens],1) |
|
hint = self.projector(hint) |
|
return hint |
|
|
|
def encode(self, image): |
|
return self(image) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|