3v324v23's picture
first latest
7bdf62a
raw
history blame
8.62 kB
import json
import cv2
import numpy as np
import os
from torch.utils.data import Dataset
from PIL import Image
import cv2
from .data_utils import *
cv2.setNumThreads(0)
cv2.ocl.setUseOpenCL(False)
import albumentations as A
class BaseDataset(Dataset):
def __init__(self):
image_mask_dict = {}
self.data = []
def __len__(self):
# We adjust the ratio of different dataset by setting the length.
pass
def aug_data_back(self, image):
transform = A.Compose([
A.ColorJitter(p=0.5, brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5),
A.ChannelShuffle()
])
transformed = transform(image=image.astype(np.uint8))
transformed_image = transformed["image"]
return transformed_image
def aug_data_mask(self, image, mask):
transform = A.Compose([
A.HorizontalFlip(p=0.5),
A.RandomBrightnessContrast(p=0.5),
#A.Rotate(limit=20, border_mode=cv2.BORDER_CONSTANT, value=(0,0,0)),
])
transformed = transform(image=image.astype(np.uint8), mask = mask)
transformed_image = transformed["image"]
transformed_mask = transformed["mask"]
return transformed_image, transformed_mask
def check_region_size(self, image, yyxx, ratio, mode = 'max'):
pass_flag = True
H,W = image.shape[0], image.shape[1]
H,W = H * ratio, W * ratio
y1,y2,x1,x2 = yyxx
h,w = y2-y1,x2-x1
if mode == 'max':
if h > H or w > W:
pass_flag = False
elif mode == 'min':
if h < H or w < W:
pass_flag = False
return pass_flag
def __getitem__(self, idx):
while(True):
try:
idx = np.random.randint(0, len(self.data)-1)
item = self.get_sample(idx)
return item
except:
idx = np.random.randint(0, len(self.data)-1)
def get_sample(self, idx):
# Implemented for each specific dataset
pass
def sample_timestep(self, max_step =1000):
if np.random.rand() < 0.3:
step = np.random.randint(0,max_step)
return np.array([step])
if self.dynamic == 1:
# coarse videos
step_start = max_step // 2
step_end = max_step
elif self.dynamic == 0:
# static images
step_start = 0
step_end = max_step // 2
else:
# fine multi-view images/videos/3Ds
step_start = 0
step_end = max_step
step = np.random.randint(step_start, step_end)
return np.array([step])
def check_mask_area(self, mask):
H,W = mask.shape[0], mask.shape[1]
ratio = mask.sum() / (H * W)
if ratio > 0.8 * 0.8 or ratio < 0.1 * 0.1:
return False
else:
return True
def process_pairs(self, ref_image, ref_mask, tar_image, tar_mask, max_ratio = 0.8):
assert mask_score(ref_mask) > 0.90
assert self.check_mask_area(ref_mask) == True
assert self.check_mask_area(tar_mask) == True
# ========= Reference ===========
'''
# similate the case that the mask for reference object is coarse. Seems useless :(
if np.random.uniform(0, 1) < 0.7:
ref_mask_clean = ref_mask.copy()
ref_mask_clean = np.stack([ref_mask_clean,ref_mask_clean,ref_mask_clean],-1)
ref_mask = perturb_mask(ref_mask, 0.6, 0.9)
# select a fake bg to avoid the background leakage
fake_target = tar_image.copy()
h,w = ref_image.shape[0], ref_image.shape[1]
fake_targe = cv2.resize(fake_target, (w,h))
fake_back = np.fliplr(np.flipud(fake_target))
fake_back = self.aug_data_back(fake_back)
ref_image = ref_mask_clean * ref_image + (1-ref_mask_clean) * fake_back
'''
# Get the outline Box of the reference image
ref_box_yyxx = get_bbox_from_mask(ref_mask)
assert self.check_region_size(ref_mask, ref_box_yyxx, ratio = 0.10, mode = 'min') == True
# Filtering background for the reference image
ref_mask_3 = np.stack([ref_mask,ref_mask,ref_mask],-1)
masked_ref_image = ref_image * ref_mask_3 + np.ones_like(ref_image) * 255 * (1-ref_mask_3)
y1,y2,x1,x2 = ref_box_yyxx
masked_ref_image = masked_ref_image[y1:y2,x1:x2,:]
ref_mask = ref_mask[y1:y2,x1:x2]
ratio = np.random.randint(11, 15) / 10
masked_ref_image, ref_mask = expand_image_mask(masked_ref_image, ref_mask, ratio=ratio)
ref_mask_3 = np.stack([ref_mask,ref_mask,ref_mask],-1)
# Padding reference image to square and resize to 224
masked_ref_image = pad_to_square(masked_ref_image, pad_value = 255, random = False)
masked_ref_image = cv2.resize(masked_ref_image.astype(np.uint8), (224,224) ).astype(np.uint8)
ref_mask_3 = pad_to_square(ref_mask_3 * 255, pad_value = 0, random = False)
ref_mask_3 = cv2.resize(ref_mask_3.astype(np.uint8), (224,224) ).astype(np.uint8)
ref_mask = ref_mask_3[:,:,0]
# Augmenting reference image
#masked_ref_image_aug = self.aug_data(masked_ref_image)
# Getting for high-freqency map
masked_ref_image_compose, ref_mask_compose = self.aug_data_mask(masked_ref_image, ref_mask)
masked_ref_image_aug = masked_ref_image_compose.copy()
ref_mask_3 = np.stack([ref_mask_compose,ref_mask_compose,ref_mask_compose],-1)
ref_image_collage = sobel(masked_ref_image_compose, ref_mask_compose/255)
# ========= Training Target ===========
tar_box_yyxx = get_bbox_from_mask(tar_mask)
tar_box_yyxx = expand_bbox(tar_mask, tar_box_yyxx, ratio=[1.1,1.2]) #1.1 1.3
assert self.check_region_size(tar_mask, tar_box_yyxx, ratio = max_ratio, mode = 'max') == True
# Cropping around the target object
tar_box_yyxx_crop = expand_bbox(tar_image, tar_box_yyxx, ratio=[1.3, 3.0])
tar_box_yyxx_crop = box2squre(tar_image, tar_box_yyxx_crop) # crop box
y1,y2,x1,x2 = tar_box_yyxx_crop
cropped_target_image = tar_image[y1:y2,x1:x2,:]
cropped_tar_mask = tar_mask[y1:y2,x1:x2]
tar_box_yyxx = box_in_box(tar_box_yyxx, tar_box_yyxx_crop)
y1,y2,x1,x2 = tar_box_yyxx
# Prepairing collage image
ref_image_collage = cv2.resize(ref_image_collage.astype(np.uint8), (x2-x1, y2-y1))
ref_mask_compose = cv2.resize(ref_mask_compose.astype(np.uint8), (x2-x1, y2-y1))
ref_mask_compose = (ref_mask_compose > 128).astype(np.uint8)
collage = cropped_target_image.copy()
collage[y1:y2,x1:x2,:] = ref_image_collage
collage_mask = cropped_target_image.copy() * 0.0
collage_mask[y1:y2,x1:x2,:] = 1.0
if np.random.uniform(0, 1) < 0.7:
cropped_tar_mask = perturb_mask(cropped_tar_mask)
collage_mask = np.stack([cropped_tar_mask,cropped_tar_mask,cropped_tar_mask],-1)
H1, W1 = collage.shape[0], collage.shape[1]
cropped_target_image = pad_to_square(cropped_target_image, pad_value = 0, random = False).astype(np.uint8)
collage = pad_to_square(collage, pad_value = 0, random = False).astype(np.uint8)
collage_mask = pad_to_square(collage_mask, pad_value = 2, random = False).astype(np.uint8)
H2, W2 = collage.shape[0], collage.shape[1]
cropped_target_image = cv2.resize(cropped_target_image.astype(np.uint8), (512,512)).astype(np.float32)
collage = cv2.resize(collage.astype(np.uint8), (512,512)).astype(np.float32)
collage_mask = cv2.resize(collage_mask.astype(np.uint8), (512,512), interpolation = cv2.INTER_NEAREST).astype(np.float32)
collage_mask[collage_mask == 2] = -1
# Prepairing dataloader items
masked_ref_image_aug = masked_ref_image_aug / 255
cropped_target_image = cropped_target_image / 127.5 - 1.0
collage = collage / 127.5 - 1.0
collage = np.concatenate([collage, collage_mask[:,:,:1] ] , -1)
item = dict(
ref=masked_ref_image_aug.copy(),
jpg=cropped_target_image.copy(),
hint=collage.copy(),
extra_sizes=np.array([H1, W1, H2, W2]),
tar_box_yyxx_crop=np.array(tar_box_yyxx_crop)
)
return item