3v324v23's picture
first latest
7bdf62a
raw
history blame
2.3 kB
import json
import cv2
import numpy as np
import os
from torch.utils.data import Dataset
from PIL import Image
import cv2
from .data_utils import *
from .base import BaseDataset
from pycocotools import mask as mask_utils
class SAMDataset(BaseDataset):
def __init__(self, sub1, sub2, sub3, sub4):
image_mask_dict = {}
self.data = []
self.register_subset(sub1)
self.register_subset(sub2)
self.register_subset(sub3)
self.register_subset(sub4)
self.size = (512,512)
self.clip_size = (224,224)
self.dynamic = 0
def register_subset(self, path):
data = os.listdir(path)
data = [ os.path.join(path, i) for i in data if '.json' in i]
self.data = self.data + data
def get_sample(self, idx):
# ==== get pairs =====
json_path = self.data[idx]
image_path = json_path.replace('.json', '.jpg')
with open(json_path, 'r') as json_file:
data = json.load(json_file)
annotation = data['annotations']
valid_ids = []
for i in range(len(annotation)):
area = annotation[i]['area']
if area > 100 * 100 * 5:
valid_ids.append(i)
chosen_id = np.random.choice(valid_ids)
mask = mask_utils.decode(annotation[chosen_id]["segmentation"] )
# ======================
image = cv2.imread(image_path)
ref_image = cv2.cvtColor(image.copy(), cv2.COLOR_BGR2RGB)
tar_image = ref_image
ref_mask = mask
tar_mask = mask
item_with_collage = self.process_pairs(ref_image, ref_mask, tar_image, tar_mask)
sampled_time_steps = self.sample_timestep()
item_with_collage['time_steps'] = sampled_time_steps
return item_with_collage
def __len__(self):
return 20000
def check_region_size(self, image, yyxx, ratio, mode = 'max'):
pass_flag = True
H,W = image.shape[0], image.shape[1]
H,W = H * ratio, W * ratio
y1,y2,x1,x2 = yyxx
h,w = y2-y1,x2-x1
if mode == 'max':
if h > H or w > W:
pass_flag = False
elif mode == 'min':
if h < H or w < W:
pass_flag = False
return pass_flag