3v324v23's picture
first latest
7bdf62a
raw
history blame
3.07 kB
import json
import cv2
import numpy as np
import os
from torch.utils.data import Dataset
from PIL import Image
import cv2
from .data_utils import *
from .base import BaseDataset
class YoutubeVISDataset(BaseDataset):
def __init__(self, image_dir, anno, meta):
self.image_root = image_dir
self.anno_root = anno
self.meta_file = meta
video_dirs = []
with open(self.meta_file) as f:
records = json.load(f)
records = records["videos"]
for video_id in records:
video_dirs.append(video_id)
self.records = records
self.data = video_dirs
self.size = (512,512)
self.clip_size = (224,224)
self.dynamic = 1
def __len__(self):
return 40000
def check_region_size(self, image, yyxx, ratio, mode = 'max'):
pass_flag = True
H,W = image.shape[0], image.shape[1]
H,W = H * ratio, W * ratio
y1,y2,x1,x2 = yyxx
h,w = y2-y1,x2-x1
if mode == 'max':
if h > H and w > W:
pass_flag = False
elif mode == 'min':
if h < H and w < W:
pass_flag = False
return pass_flag
def get_sample(self, idx):
video_id = list(self.records.keys())[idx]
objects_id = np.random.choice( list(self.records[video_id]["objects"].keys()) )
frames = self.records[video_id]["objects"][objects_id]["frames"]
# Sampling frames
min_interval = len(frames) // 10
start_frame_index = np.random.randint(low=0, high=len(frames) - min_interval)
end_frame_index = start_frame_index + np.random.randint(min_interval, len(frames) - start_frame_index )
end_frame_index = min(end_frame_index, len(frames) - 1)
# Get image path
ref_image_name = frames[start_frame_index]
tar_image_name = frames[end_frame_index]
ref_image_path = os.path.join(self.image_root, video_id, ref_image_name) + '.jpg'
tar_image_path = os.path.join(self.image_root, video_id, tar_image_name) + '.jpg'
ref_mask_path = ref_image_path.replace('JPEGImages','Annotations').replace('.jpg', '.png')
tar_mask_path = tar_image_path.replace('JPEGImages','Annotations').replace('.jpg', '.png')
# Read Image and Mask
ref_image = cv2.imread(ref_image_path)
ref_image = cv2.cvtColor(ref_image, cv2.COLOR_BGR2RGB)
tar_image = cv2.imread(tar_image_path)
tar_image = cv2.cvtColor(tar_image, cv2.COLOR_BGR2RGB)
ref_mask = Image.open(ref_mask_path ).convert('P')
ref_mask= np.array(ref_mask)
ref_mask = ref_mask == int(objects_id)
tar_mask = Image.open(tar_mask_path ).convert('P')
tar_mask= np.array(tar_mask)
tar_mask = tar_mask == int(objects_id)
item_with_collage = self.process_pairs(ref_image, ref_mask, tar_image, tar_mask)
sampled_time_steps = self.sample_timestep()
item_with_collage['time_steps'] = sampled_time_steps
return item_with_collage