3v324v23's picture
first latest
7bdf62a
raw
history blame
2.71 kB
import json
import cv2
import numpy as np
import os
from torch.utils.data import Dataset
from PIL import Image
import cv2
from .data_utils import *
from .base import BaseDataset
from pycocotools import mask as mask_utils
class UVODataset(BaseDataset):
def __init__(self, image_dir, video_json, image_json):
json_path = video_json
with open(json_path, 'r') as fcc_file:
data = json.load(fcc_file)
image_json_path = image_json
with open(image_json_path , 'r') as image_file:
video_dict = json.load(image_file)
self.image_root = image_dir
self.data = data['annotations']
self.video_dict = video_dict
self.size = (512,512)
self.clip_size = (224,224)
self.dynamic = 1
def __len__(self):
return 25000
def check_region_size(self, image, yyxx, ratio, mode = 'max'):
pass_flag = True
H,W = image.shape[0], image.shape[1]
H,W = H * ratio, W * ratio
y1,y2,x1,x2 = yyxx
h,w = y2-y1,x2-x1
if mode == 'max':
if h > H and w > W:
pass_flag = False
elif mode == 'min':
if h < H and w < W:
pass_flag = False
return pass_flag
def get_sample(self, idx):
ins_anno = self.data[idx]
video_id = str(ins_anno['video_id'])
video_names = self.video_dict[video_id]
masks = ins_anno['segmentations']
frames = video_names
# Sampling frames
min_interval = len(frames) // 10
start_frame_index = np.random.randint(low=0, high=len(frames) - min_interval)
end_frame_index = start_frame_index + np.random.randint(min_interval, len(frames) - start_frame_index )
end_frame_index = min(end_frame_index, len(frames) - 1)
# Get image path
ref_image_name = frames[start_frame_index]
tar_image_name = frames[end_frame_index]
ref_image_path = os.path.join(self.image_root, ref_image_name)
tar_image_path = os.path.join(self.image_root, tar_image_name)
# Read Image and Mask
ref_image = cv2.imread(ref_image_path)
ref_image = cv2.cvtColor(ref_image, cv2.COLOR_BGR2RGB)
tar_image = cv2.imread(tar_image_path)
tar_image = cv2.cvtColor(tar_image, cv2.COLOR_BGR2RGB)
ref_mask = mask_utils.decode(masks[start_frame_index])
tar_mask = mask_utils.decode(masks[end_frame_index])
item_with_collage = self.process_pairs(ref_image, ref_mask, tar_image, tar_mask)
sampled_time_steps = self.sample_timestep()
item_with_collage['time_steps'] = sampled_time_steps
return item_with_collage