|
import einops |
|
import torch |
|
import torch as th |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from ldm.modules.diffusionmodules.util import ( |
|
conv_nd, |
|
linear, |
|
zero_module, |
|
timestep_embedding, |
|
) |
|
from einops import rearrange, repeat |
|
from torchvision.utils import make_grid |
|
from ldm.modules.attention import SpatialTransformer |
|
from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock |
|
from ldm.models.diffusion.ddpm import LatentDiffusion |
|
from ldm.util import log_txt_as_img, exists, instantiate_from_config |
|
from ldm.models.diffusion.ddim import DDIMSampler |
|
|
|
|
|
class ControlledUnetModel(UNetModel): |
|
def forward(self, x, timesteps=None, context=None, control=None, only_mid_control=False, **kwargs): |
|
hs = [] |
|
with torch.no_grad(): |
|
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) |
|
emb = self.time_embed(t_emb) |
|
h = x.type(self.dtype) |
|
for module in self.input_blocks: |
|
h = module(h, emb, context) |
|
hs.append(h) |
|
h = self.middle_block(h, emb, context) |
|
|
|
if control is not None: |
|
h += control.pop() |
|
|
|
for i, module in enumerate(self.output_blocks): |
|
if only_mid_control or control is None: |
|
h = torch.cat([h, hs.pop()], dim=1) |
|
else: |
|
h = torch.cat([h, hs.pop() + control.pop()], dim=1) |
|
h = module(h, emb, context) |
|
|
|
h = h.type(x.dtype) |
|
return self.out(h) |
|
|
|
|
|
class ControlNet(nn.Module): |
|
def __init__( |
|
self, |
|
image_size, |
|
in_channels, |
|
model_channels, |
|
hint_channels, |
|
num_res_blocks, |
|
attention_resolutions, |
|
dropout=0, |
|
channel_mult=(1, 2, 4, 8), |
|
conv_resample=True, |
|
dims=2, |
|
use_checkpoint=False, |
|
use_fp16=False, |
|
num_heads=-1, |
|
num_head_channels=-1, |
|
num_heads_upsample=-1, |
|
use_scale_shift_norm=False, |
|
resblock_updown=False, |
|
use_new_attention_order=False, |
|
use_spatial_transformer=False, |
|
transformer_depth=1, |
|
context_dim=None, |
|
n_embed=None, |
|
legacy=True, |
|
disable_self_attentions=None, |
|
num_attention_blocks=None, |
|
disable_middle_self_attn=False, |
|
use_linear_in_transformer=False, |
|
): |
|
super().__init__() |
|
if use_spatial_transformer: |
|
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' |
|
|
|
if context_dim is not None: |
|
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' |
|
from omegaconf.listconfig import ListConfig |
|
if type(context_dim) == ListConfig: |
|
context_dim = list(context_dim) |
|
|
|
if num_heads_upsample == -1: |
|
num_heads_upsample = num_heads |
|
|
|
if num_heads == -1: |
|
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' |
|
|
|
if num_head_channels == -1: |
|
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' |
|
|
|
self.dims = dims |
|
self.image_size = image_size |
|
self.in_channels = in_channels |
|
self.model_channels = model_channels |
|
if isinstance(num_res_blocks, int): |
|
self.num_res_blocks = len(channel_mult) * [num_res_blocks] |
|
else: |
|
if len(num_res_blocks) != len(channel_mult): |
|
raise ValueError("provide num_res_blocks either as an int (globally constant) or " |
|
"as a list/tuple (per-level) with the same length as channel_mult") |
|
self.num_res_blocks = num_res_blocks |
|
if disable_self_attentions is not None: |
|
|
|
assert len(disable_self_attentions) == len(channel_mult) |
|
if num_attention_blocks is not None: |
|
assert len(num_attention_blocks) == len(self.num_res_blocks) |
|
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)))) |
|
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. " |
|
f"This option has LESS priority than attention_resolutions {attention_resolutions}, " |
|
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " |
|
f"attention will still not be set.") |
|
|
|
self.attention_resolutions = attention_resolutions |
|
self.dropout = dropout |
|
self.channel_mult = channel_mult |
|
self.conv_resample = conv_resample |
|
self.use_checkpoint = use_checkpoint |
|
self.dtype = th.float16 if use_fp16 else th.float32 |
|
self.num_heads = num_heads |
|
self.num_head_channels = num_head_channels |
|
self.num_heads_upsample = num_heads_upsample |
|
self.predict_codebook_ids = n_embed is not None |
|
|
|
time_embed_dim = model_channels * 4 |
|
self.time_embed = nn.Sequential( |
|
linear(model_channels, time_embed_dim), |
|
nn.SiLU(), |
|
linear(time_embed_dim, time_embed_dim), |
|
) |
|
|
|
self.input_blocks = nn.ModuleList( |
|
[ |
|
TimestepEmbedSequential( |
|
conv_nd(dims, in_channels, model_channels, 3, padding=1) |
|
) |
|
] |
|
) |
|
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)]) |
|
|
|
self.input_hint_block = TimestepEmbedSequential( |
|
conv_nd(dims, hint_channels, 16, 3, padding=1), |
|
nn.SiLU(), |
|
conv_nd(dims, 16, 16, 3, padding=1), |
|
nn.SiLU(), |
|
conv_nd(dims, 16, 32, 3, padding=1, stride=2), |
|
nn.SiLU(), |
|
conv_nd(dims, 32, 32, 3, padding=1), |
|
nn.SiLU(), |
|
conv_nd(dims, 32, 96, 3, padding=1, stride=2), |
|
nn.SiLU(), |
|
conv_nd(dims, 96, 96, 3, padding=1), |
|
nn.SiLU(), |
|
conv_nd(dims, 96, 256, 3, padding=1, stride=2), |
|
nn.SiLU(), |
|
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1)) |
|
) |
|
|
|
self._feature_size = model_channels |
|
input_block_chans = [model_channels] |
|
ch = model_channels |
|
ds = 1 |
|
for level, mult in enumerate(channel_mult): |
|
for nr in range(self.num_res_blocks[level]): |
|
layers = [ |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=mult * model_channels, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
) |
|
] |
|
ch = mult * model_channels |
|
if ds in attention_resolutions: |
|
if num_head_channels == -1: |
|
dim_head = ch // num_heads |
|
else: |
|
num_heads = ch // num_head_channels |
|
dim_head = num_head_channels |
|
if legacy: |
|
|
|
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels |
|
if exists(disable_self_attentions): |
|
disabled_sa = disable_self_attentions[level] |
|
else: |
|
disabled_sa = False |
|
|
|
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: |
|
layers.append( |
|
AttentionBlock( |
|
ch, |
|
use_checkpoint=use_checkpoint, |
|
num_heads=num_heads, |
|
num_head_channels=dim_head, |
|
use_new_attention_order=use_new_attention_order, |
|
) if not use_spatial_transformer else SpatialTransformer( |
|
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, |
|
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, |
|
use_checkpoint=use_checkpoint |
|
) |
|
) |
|
self.input_blocks.append(TimestepEmbedSequential(*layers)) |
|
self.zero_convs.append(self.make_zero_conv(ch)) |
|
self._feature_size += ch |
|
input_block_chans.append(ch) |
|
if level != len(channel_mult) - 1: |
|
out_ch = ch |
|
self.input_blocks.append( |
|
TimestepEmbedSequential( |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=out_ch, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
down=True, |
|
) |
|
if resblock_updown |
|
else Downsample( |
|
ch, conv_resample, dims=dims, out_channels=out_ch |
|
) |
|
) |
|
) |
|
ch = out_ch |
|
input_block_chans.append(ch) |
|
self.zero_convs.append(self.make_zero_conv(ch)) |
|
ds *= 2 |
|
self._feature_size += ch |
|
|
|
if num_head_channels == -1: |
|
dim_head = ch // num_heads |
|
else: |
|
num_heads = ch // num_head_channels |
|
dim_head = num_head_channels |
|
if legacy: |
|
|
|
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels |
|
self.middle_block = TimestepEmbedSequential( |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
), |
|
AttentionBlock( |
|
ch, |
|
use_checkpoint=use_checkpoint, |
|
num_heads=num_heads, |
|
num_head_channels=dim_head, |
|
use_new_attention_order=use_new_attention_order, |
|
) if not use_spatial_transformer else SpatialTransformer( |
|
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, |
|
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, |
|
use_checkpoint=use_checkpoint |
|
), |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
), |
|
) |
|
self.middle_block_out = self.make_zero_conv(ch) |
|
self._feature_size += ch |
|
|
|
def make_zero_conv(self, channels): |
|
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0))) |
|
|
|
def forward(self, x, hint, timesteps, context, **kwargs): |
|
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) |
|
emb = self.time_embed(t_emb) |
|
|
|
|
|
guided_hint = self.input_hint_block(hint, emb, context) |
|
outs = [] |
|
|
|
h = x.type(self.dtype) |
|
for module, zero_conv in zip(self.input_blocks, self.zero_convs): |
|
if guided_hint is not None: |
|
|
|
h = guided_hint |
|
guided_hint = None |
|
else: |
|
h_new = module(h, emb, context) |
|
h = h_new |
|
outs.append(zero_conv(h, emb, context)) |
|
|
|
h_new = self.middle_block(h, emb, context) |
|
outs.append(self.middle_block_out(h_new, emb, context)) |
|
return outs |
|
|
|
|
|
class ControlLDM(LatentDiffusion): |
|
|
|
def __init__(self, control_stage_config, control_key, only_mid_control, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.control_model = instantiate_from_config(control_stage_config) |
|
self.control_key = control_key |
|
self.only_mid_control = only_mid_control |
|
self.control_scales = [1.0] * 13 |
|
|
|
@torch.no_grad() |
|
def get_input(self, batch, k, bs=None, *args, **kwargs): |
|
x, c = super().get_input(batch, self.first_stage_key, *args, **kwargs) |
|
control = batch[self.control_key] |
|
if bs is not None: |
|
control = control[:bs] |
|
control = control.to(self.device) |
|
control = einops.rearrange(control, 'b h w c -> b c h w') |
|
control = control.to(memory_format=torch.contiguous_format).float() |
|
self.time_steps = batch['time_steps'] |
|
return x, dict(c_crossattn=[c], c_concat=[control]) |
|
|
|
def apply_model(self, x_noisy, t, cond, *args, **kwargs): |
|
assert isinstance(cond, dict) |
|
diffusion_model = self.model.diffusion_model |
|
|
|
cond_txt = torch.cat(cond['c_crossattn'], 1) |
|
|
|
if cond['c_concat'] is None: |
|
eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=None, only_mid_control=self.only_mid_control) |
|
else: |
|
control = self.control_model(x=x_noisy, hint=torch.cat(cond['c_concat'], 1), timesteps=t, context=cond_txt) |
|
control = [c * scale for c, scale in zip(control, self.control_scales)] |
|
eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=control, only_mid_control=self.only_mid_control) |
|
return eps |
|
|
|
@torch.no_grad() |
|
def get_unconditional_conditioning(self, N): |
|
uncond = self.get_learned_conditioning([ torch.zeros((1,3,224,224)) ] * N) |
|
return uncond |
|
|
|
@torch.no_grad() |
|
def log_images(self, batch, N=4, n_row=2, sample=False, ddim_steps=50, ddim_eta=0.0, return_keys=None, |
|
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True, |
|
plot_diffusion_rows=False, unconditional_guidance_scale=9.0, unconditional_guidance_label=None, |
|
use_ema_scope=True, |
|
**kwargs): |
|
use_ddim = ddim_steps is not None |
|
|
|
log = dict() |
|
z, c = self.get_input(batch, self.first_stage_key, bs=N) |
|
c_cat, c = c["c_concat"][0][:N], c["c_crossattn"][0][:N] |
|
N = min(z.shape[0], N) |
|
n_row = min(z.shape[0], n_row) |
|
log["reconstruction"] = self.decode_first_stage(z) |
|
|
|
|
|
guide_mask = (c_cat[:,-1,:,:].unsqueeze(1) + 1) * 0.5 |
|
guide_mask = torch.cat([guide_mask,guide_mask,guide_mask],1) |
|
HF_map = c_cat[:,:3,:,:] |
|
|
|
log["control"] = HF_map |
|
|
|
cond_image = batch[self.cond_stage_key].cpu().numpy().copy() |
|
log["conditioning"] = torch.permute( torch.tensor(cond_image), (0,3,1,2)) * 2.0 - 1.0 |
|
if plot_diffusion_rows: |
|
|
|
diffusion_row = list() |
|
z_start = z[:n_row] |
|
for t in range(self.num_timesteps): |
|
if t % self.log_every_t == 0 or t == self.num_timesteps - 1: |
|
t = repeat(torch.tensor([t]), '1 -> b', b=n_row) |
|
t = t.to(self.device).long() |
|
noise = torch.randn_like(z_start) |
|
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) |
|
diffusion_row.append(self.decode_first_stage(z_noisy)) |
|
|
|
diffusion_row = torch.stack(diffusion_row) |
|
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w') |
|
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w') |
|
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) |
|
log["diffusion_row"] = diffusion_grid |
|
|
|
if sample: |
|
|
|
samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]}, |
|
batch_size=N, ddim=use_ddim, |
|
ddim_steps=ddim_steps, eta=ddim_eta) |
|
x_samples = self.decode_first_stage(samples) |
|
log["samples"] = x_samples |
|
if plot_denoise_rows: |
|
denoise_grid = self._get_denoise_row_from_list(z_denoise_row) |
|
log["denoise_row"] = denoise_grid |
|
|
|
if unconditional_guidance_scale > 1.0: |
|
uc_cross = self.get_unconditional_conditioning(N) |
|
uc_cat = c_cat |
|
uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]} |
|
samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]}, |
|
batch_size=N, ddim=use_ddim, |
|
ddim_steps=ddim_steps, eta=ddim_eta, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=uc_full, |
|
) |
|
x_samples_cfg = self.decode_first_stage(samples_cfg) |
|
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg |
|
return log |
|
|
|
@torch.no_grad() |
|
def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs): |
|
ddim_sampler = DDIMSampler(self) |
|
b, c, h, w = cond["c_concat"][0].shape |
|
shape = (self.channels, h // 8, w // 8) |
|
samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size, shape, cond, verbose=False, **kwargs) |
|
return samples, intermediates |
|
|
|
def configure_optimizers(self): |
|
lr = self.learning_rate |
|
params = list(self.control_model.parameters()) |
|
if not self.sd_locked: |
|
params += list(self.model.diffusion_model.output_blocks.parameters()) |
|
params += list(self.model.diffusion_model.out.parameters()) |
|
params += list(self.cond_stage_model.projector.parameters()) |
|
opt = torch.optim.AdamW(params, lr=lr) |
|
return opt |
|
|
|
def low_vram_shift(self, is_diffusing): |
|
if is_diffusing: |
|
self.model = self.model.cuda() |
|
self.control_model = self.control_model.cuda() |
|
self.first_stage_model = self.first_stage_model.cpu() |
|
self.cond_stage_model = self.cond_stage_model.cpu() |
|
else: |
|
self.model = self.model.cpu() |
|
self.control_model = self.control_model.cpu() |
|
self.first_stage_model = self.first_stage_model.cuda() |
|
self.cond_stage_model = self.cond_stage_model.cuda() |
|
|