|
import json |
|
import cv2 |
|
import numpy as np |
|
import os |
|
from torch.utils.data import Dataset |
|
from PIL import Image |
|
import cv2 |
|
from .data_utils import * |
|
from .base import BaseDataset |
|
|
|
class SaliencyDataset(BaseDataset): |
|
def __init__(self, MSRA_root, TR_root, TE_root, HFlickr_root): |
|
image_mask_dict = {} |
|
|
|
|
|
file_lst = os.listdir(MSRA_root) |
|
image_lst = [MSRA_root+i for i in file_lst if '.jpg' in i] |
|
for i in image_lst: |
|
mask_path = i.replace('.jpg','.png') |
|
image_mask_dict[i] = mask_path |
|
|
|
|
|
file_lst = os.listdir(TR_root) |
|
image_lst = [TR_root+i for i in file_lst if '.jpg' in i] |
|
for i in image_lst: |
|
mask_path = i.replace('.jpg','.png').replace('DUTS-TR-Image','DUTS-TR-Mask') |
|
image_mask_dict[i] = mask_path |
|
|
|
|
|
file_lst = os.listdir(TE_root) |
|
image_lst = [TE_root+i for i in file_lst if '.jpg' in i] |
|
for i in image_lst: |
|
mask_path = i.replace('.jpg','.png').replace('DUTS-TE-Image','DUTS-TE-Mask') |
|
image_mask_dict[i] = mask_path |
|
|
|
|
|
file_lst = os.listdir(HFlickr_root) |
|
mask_list = [HFlickr_root+i for i in file_lst if '.png' in i] |
|
for i in file_lst: |
|
image_name = i.split('_')[0] +'.jpg' |
|
image_path = HFlickr_root.replace('masks', 'real_images') + image_name |
|
mask_path = HFlickr_root + i |
|
image_mask_dict[image_path] = mask_path |
|
|
|
self.image_mask_dict = image_mask_dict |
|
self.data = list(self.image_mask_dict.keys() ) |
|
self.size = (512,512) |
|
self.clip_size = (224,224) |
|
self.dynamic = 0 |
|
|
|
def __len__(self): |
|
return 20000 |
|
|
|
def check_region_size(self, image, yyxx, ratio, mode = 'max'): |
|
pass_flag = True |
|
H,W = image.shape[0], image.shape[1] |
|
H,W = H * ratio, W * ratio |
|
y1,y2,x1,x2 = yyxx |
|
h,w = y2-y1,x2-x1 |
|
if mode == 'max': |
|
if h > H or w > W: |
|
pass_flag = False |
|
elif mode == 'min': |
|
if h < H or w < W: |
|
pass_flag = False |
|
return pass_flag |
|
|
|
def get_sample(self, idx): |
|
|
|
|
|
image_path = self.data[idx] |
|
mask_path = self.image_mask_dict[image_path] |
|
|
|
instances_mask = cv2.imread(mask_path) |
|
if len(instances_mask.shape) == 3: |
|
instances_mask = instances_mask[:,:,0] |
|
instances_mask = (instances_mask > 128).astype(np.uint8) |
|
|
|
ref_image = cv2.imread(image_path) |
|
ref_image = cv2.cvtColor(ref_image.copy(), cv2.COLOR_BGR2RGB) |
|
tar_image = ref_image |
|
|
|
ref_mask = instances_mask |
|
tar_mask = instances_mask |
|
item_with_collage = self.process_pairs(ref_image, ref_mask, tar_image, tar_mask) |
|
sampled_time_steps = self.sample_timestep() |
|
item_with_collage['time_steps'] = sampled_time_steps |
|
return item_with_collage |
|
|
|
|
|
|
|
|