|
"""MobileNet and MobileNetV2.""" |
|
''' |
|
Code adopted from https://github.com/LikeLy-Journey/SegmenTron/blob/master/segmentron/models/backbones/mobilenet.py |
|
''' |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
|
|
class _ConvBNReLU(nn.Module): |
|
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, |
|
dilation=1, groups=1, relu6=False, norm_layer=nn.BatchNorm2d): |
|
super(_ConvBNReLU, self).__init__() |
|
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias=False) |
|
self.bn = norm_layer(out_channels) |
|
self.relu = nn.ReLU6(True) if relu6 else nn.ReLU(True) |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.bn(x) |
|
x = self.relu(x) |
|
return x |
|
|
|
class _DepthwiseConv(nn.Module): |
|
"""conv_dw in MobileNet""" |
|
|
|
def __init__(self, in_channels, out_channels, stride, norm_layer=nn.BatchNorm2d, **kwargs): |
|
super(_DepthwiseConv, self).__init__() |
|
self.conv = nn.Sequential( |
|
_ConvBNReLU(in_channels, in_channels, 3, stride, 1, groups=in_channels, norm_layer=norm_layer), |
|
_ConvBNReLU(in_channels, out_channels, 1, norm_layer=norm_layer)) |
|
|
|
def forward(self, x): |
|
return self.conv(x) |
|
|
|
|
|
class InvertedResidual(nn.Module): |
|
def __init__(self, in_channels, out_channels, stride, expand_ratio, dilation=1, norm_layer=nn.BatchNorm2d): |
|
super(InvertedResidual, self).__init__() |
|
assert stride in [1, 2] |
|
self.use_res_connect = stride == 1 and in_channels == out_channels |
|
|
|
layers = list() |
|
inter_channels = int(round(in_channels * expand_ratio)) |
|
if expand_ratio != 1: |
|
|
|
layers.append(_ConvBNReLU(in_channels, inter_channels, 1, relu6=True, norm_layer=norm_layer)) |
|
layers.extend([ |
|
|
|
_ConvBNReLU(inter_channels, inter_channels, 3, stride, dilation, dilation, |
|
groups=inter_channels, relu6=True, norm_layer=norm_layer), |
|
|
|
nn.Conv2d(inter_channels, out_channels, 1, bias=False), |
|
norm_layer(out_channels)]) |
|
self.conv = nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
if self.use_res_connect: |
|
return x + self.conv(x) |
|
else: |
|
return self.conv(x) |
|
|
|
|
|
|
|
|
|
class MobileNetV2(nn.Module): |
|
def __init__(self, num_classes=1000, norm_layer=nn.BatchNorm2d): |
|
super(MobileNetV2, self).__init__() |
|
output_stride = 8 |
|
self.multiplier = 1 |
|
if output_stride == 32: |
|
dilations = [1, 1] |
|
elif output_stride == 16: |
|
dilations = [1, 2] |
|
elif output_stride == 8: |
|
dilations = [2, 4] |
|
else: |
|
raise NotImplementedError |
|
inverted_residual_setting = [ |
|
|
|
[1, 16, 1, 1], |
|
[6, 24, 2, 2], |
|
[6, 32, 3, 2], |
|
[6, 64, 4, 2], |
|
[6, 96, 3, 1], |
|
[6, 160, 3, 2], |
|
[6, 320, 1, 1]] |
|
|
|
input_channels = int(32 * self.multiplier) if self.multiplier > 1.0 else 32 |
|
|
|
self.conv1 = _ConvBNReLU(3, input_channels, 3, 2, 1, relu6=True, norm_layer=norm_layer) |
|
|
|
|
|
self.planes = input_channels |
|
self.block1 = self._make_layer(InvertedResidual, self.planes, inverted_residual_setting[0:1], |
|
norm_layer=norm_layer) |
|
self.block2 = self._make_layer(InvertedResidual, self.planes, inverted_residual_setting[1:2], |
|
norm_layer=norm_layer) |
|
self.block3 = self._make_layer(InvertedResidual, self.planes, inverted_residual_setting[2:3], |
|
norm_layer=norm_layer) |
|
self.block4 = self._make_layer(InvertedResidual, self.planes, inverted_residual_setting[3:5], |
|
dilations[0], norm_layer=norm_layer) |
|
self.block5 = self._make_layer(InvertedResidual, self.planes, inverted_residual_setting[5:], |
|
dilations[1], norm_layer=norm_layer) |
|
self.last_inp_channels = self.planes |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode='fan_out') |
|
if m.bias is not None: |
|
nn.init.zeros_(m.bias) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.ones_(m.weight) |
|
nn.init.zeros_(m.bias) |
|
elif isinstance(m, nn.Linear): |
|
nn.init.normal_(m.weight, 0, 0.01) |
|
if m.bias is not None: |
|
nn.init.zeros_(m.bias) |
|
|
|
def _make_layer(self, block, planes, inverted_residual_setting, dilation=1, norm_layer=nn.BatchNorm2d): |
|
features = list() |
|
for t, c, n, s in inverted_residual_setting: |
|
out_channels = int(c * self.multiplier) |
|
stride = s if dilation == 1 else 1 |
|
features.append(block(planes, out_channels, stride, t, dilation, norm_layer)) |
|
planes = out_channels |
|
for i in range(n - 1): |
|
features.append(block(planes, out_channels, 1, t, norm_layer=norm_layer)) |
|
planes = out_channels |
|
self.planes = planes |
|
return nn.Sequential(*features) |
|
|
|
def forward(self, x, side_feature): |
|
x = self.conv1(x) |
|
x = x + side_feature |
|
x = self.block1(x) |
|
c1 = self.block2(x) |
|
c2 = self.block3(c1) |
|
c3 = self.block4(c2) |
|
c4 = self.block5(c3) |
|
|
|
|
|
return c1, c2, c3, c4 |
|
|
|
def mobilenet_v2(norm_layer=nn.BatchNorm2d): |
|
return MobileNetV2(norm_layer=norm_layer) |
|
|
|
|
|
|
|
|
|
|
|
class LRASPP(nn.Module): |
|
"""Lite R-ASPP""" |
|
|
|
def __init__(self, in_channels, out_channels, norm_layer=nn.BatchNorm2d, **kwargs): |
|
super(LRASPP, self).__init__() |
|
self.b0 = nn.Sequential( |
|
nn.Conv2d(in_channels, out_channels, 1, bias=False), |
|
norm_layer(out_channels), |
|
nn.ReLU(True) |
|
) |
|
self.b1 = nn.Sequential( |
|
nn.AdaptiveAvgPool2d((2,2)), |
|
nn.Conv2d(in_channels, out_channels, 1, bias=False), |
|
nn.Sigmoid(), |
|
) |
|
|
|
def forward(self, x): |
|
size = x.size()[2:] |
|
feat1 = self.b0(x) |
|
feat2 = self.b1(x) |
|
feat2 = F.interpolate(feat2, size, mode='bilinear', align_corners=True) |
|
x = feat1 * feat2 |
|
return x |
|
|
|
|
|
|
|
class MobileSeg(nn.Module): |
|
def __init__(self, nclass=1, **kwargs): |
|
super(MobileSeg, self).__init__() |
|
self.backbone = mobilenet_v2() |
|
self.lraspp = LRASPP(320,128) |
|
self.fusion_conv1 = nn.Conv2d(128,16,1,1,0) |
|
self.fusion_conv2 = nn.Conv2d(24,16,1,1,0) |
|
self.head = nn.Conv2d(16,nclass,1,1,0) |
|
self.aux_head = nn.Conv2d(16,nclass,1,1,0) |
|
|
|
def forward(self, x, side_feature): |
|
x4, _, _, x8 = self.backbone(x, side_feature) |
|
x8 = self.lraspp(x8) |
|
x8 = F.interpolate(x8, x4.size()[2:], mode='bilinear', align_corners=True) |
|
x8 = self.fusion_conv1(x8) |
|
pred_aux = self.aux_head(x8) |
|
|
|
x4 = self.fusion_conv2(x4) |
|
x = x4 + x8 |
|
pred = self.head(x) |
|
return pred, pred_aux, x |
|
|
|
def load_pretrained_weights(self, path_to_weights= ' '): |
|
backbone_state_dict = self.backbone.state_dict() |
|
pretrained_state_dict = torch.load(path_to_weights, map_location='cpu') |
|
ckpt_keys = set(pretrained_state_dict.keys()) |
|
own_keys = set(backbone_state_dict.keys()) |
|
missing_keys = own_keys - ckpt_keys |
|
unexpected_keys = ckpt_keys - own_keys |
|
print('Loading Mobilnet V2') |
|
print('Missing Keys: ', missing_keys) |
|
print('Unexpected Keys: ', unexpected_keys) |
|
backbone_state_dict.update(pretrained_state_dict) |
|
self.backbone.load_state_dict(backbone_state_dict, strict= False) |
|
|
|
|
|
|
|
|
|
class ScaleLayer(nn.Module): |
|
def __init__(self, init_value=1.0, lr_mult=1): |
|
super().__init__() |
|
self.lr_mult = lr_mult |
|
self.scale = nn.Parameter( |
|
torch.full((1,), init_value / lr_mult, dtype=torch.float32) |
|
) |
|
|
|
def forward(self, x): |
|
scale = torch.abs(self.scale * self.lr_mult) |
|
return x * scale |
|
|
|
|
|
|
|
|
|
class BaselineModel(nn.Module): |
|
def __init__(self, backbone_lr_mult=0.1, |
|
norm_layer=nn.BatchNorm2d, **kwargs): |
|
super().__init__() |
|
self.feature_extractor = MobileSeg() |
|
side_feature_ch = 32 |
|
mt_layers = [ |
|
nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=2, padding=1), |
|
nn.LeakyReLU(negative_slope=0.2), |
|
nn.Conv2d(in_channels=16, out_channels=side_feature_ch, kernel_size=3, stride=1, padding=1), |
|
ScaleLayer(init_value=0.05, lr_mult=1) |
|
] |
|
self.maps_transform = nn.Sequential(*mt_layers) |
|
|
|
|
|
def backbone_forward(self, image, coord_features=None): |
|
mask, mask_aux, feature = self.feature_extractor(image, coord_features) |
|
return {'instances': mask, 'instances_aux':mask_aux, 'feature': feature} |
|
|
|
|
|
def prepare_input(self, image): |
|
prev_mask = torch.zeros_like(image)[:,:1,:,:] |
|
return image, prev_mask |
|
|
|
def forward(self, image, coarse_mask): |
|
image, prev_mask = self.prepare_input(image) |
|
coord_features = torch.cat((prev_mask, coarse_mask, coarse_mask * 0.0), dim=1) |
|
click_map = coord_features[:,1:,:,:] |
|
|
|
coord_features = self.maps_transform(coord_features) |
|
outputs = self.backbone_forward(image, coord_features) |
|
|
|
pred = nn.functional.interpolate( |
|
outputs['instances'], |
|
size=image.size()[2:], |
|
mode='bilinear', align_corners=True |
|
) |
|
|
|
outputs['instances'] = torch.sigmoid(pred) |
|
return outputs |
|
|
|
|
|
|
|
|